期刊论文详细信息
Journal of Translational Medicine
Expression of heat shock protein 70 in nasopharyngeal carcinomas: different expression patterns correlate with distinct clinical prognosis
Yi-Xin Zeng4  Jian-Yong Shao3  Tiebang Kang4  Sha Fu3  Li-Zhen Chen4  Hai-Yun Wang3  Qi-Sheng Feng4  Yi Liang4  Ruo-Jun Peng4  Jin-Xin Bei4  Chao-Chun Liu1  Hui-Qiong Han4  Jia-Xing Zhang3  Xiao-Pai Wang3  Man-Bo Cai2 
[1] Wadsworth Center, New York State Department of Health, Albany, NY, USA;Cancer Research Institute, University of South China, Hengyang, China;Department of Molecular Diagnostics, Cancer Center, Sun Yat-Sen University, 651# Dongfeng Road East, Guangzhou 510060, China;State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, 651# Dongfeng Road East, Guangzhou 510060, China
关键词: Prognosis;    Expression;    Heat shock protein 70;    Nasopharyngeal carcinoma;   
Others  :  1205985
DOI  :  10.1186/1479-5876-10-96
 received in 2011-12-17, accepted in 2012-05-16,  发布年份 2012
PDF
【 摘 要 】

Background

Heat shock protein 70, a stress protein, has been implicated in tumor progression. However, its role in nasopharyngeal carcinoma (NPC) progression has not yet been clearly investigated.

Methods

Immunohistochemistry (IHC) was employed to examine the expression patterns of Hsp70, human leukocyte antigen –A (HLA-A) in NPC tissue samples.

Results

The expression of Hsp70 exhibited different spatial patterns among nuclear, membrane and cytoplasm in 507 NPC tumor tissues. Kaplan-Meier survival analysis demonstrated that different Hsp70 expression patterns are correlated with different patient outcomes. High membranal and cytoplasmic levels of Hsp70 predicted good survival of patients. In contrast, high nuclear abundance of Hsp70 correlated with poor survival. Moreover, the membranal and cytoplasmic levels of Hsp70 were positively correlated with levels of the MHC I molecule HLA-A.

Conclusions

Different Hsp70 expression patterns had distinct predictive values. The different spatial abundance of Hsp70 may imply its important role in NPC development and provide insight for the development of novel therapeutic strategies involving immunotherapy for NPC.

【 授权许可】

   
2012 Cai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150526113130397.pdf 1583KB PDF download
Figure 4. 60KB Image download
Figure 3. 80KB Image download
Figure 2. 41KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wei WI, Sham JS: Nasopharyngeal carcinoma. Lancet 2005, 365(9476):2041-2054.
  • [2]Chang ET, Adami HO: The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2006, 15(10):1765-1777.
  • [3]Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, Adhikary D, Mautner J, Busson P: Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 2009, 113(9):1957-1966.
  • [4]Baujat B, Audry H, Bourhis J, Chan AT, Onat H, Chua DT, Kwong DL, Al-Sarraf M, Chi KH, Hareyama M, Pignon JP, MAC-NPC Collaborative Group: Chemotherapy in locally advanced nasopharyngeal carcinoma: an individual patient data meta-analysis of eight randomized trials and 1753 patients. Int J Radiat Oncol Biol Phys 2006, 64(1):47-56.
  • [5]Al-Sarraf M, LeBlanc M, Giri PG, Fu KK, Cooper J, Vuong T, Forastiere AA, Adams G, Sakr WA, Schuller DE, Ensley JF: Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 1998, 16(4):1310-1317.
  • [6]Langendijk JA, Leemans CR, Buter J, Berkhof J, Slotman BJ: The additional value of chemotherapy to radiotherapy in locally advanced nasopharyngeal carcinoma: a meta-analysis of the published literature. J Clin Oncol 2004, 22(22):4604-4612.
  • [7]Chan SL, Ma BB: Novel systemic therapeutic for nasopharyngeal carcinoma. Expert Opin Ther Targets 2012, 16(Suppl 1):S63-S68.
  • [8]Komatsu M, Tsukuda M, Matsuda H, Horiuchi C, Taguch T, Takahashi M, Nishimura G, Mori M, Niho T, Ishitoya J, Sakuma Y, Hirama M, Shiono O: Comparison of concurrent chemoradiotherapy versus induction chemotherapy followed by radiation in patients with nasopharyngeal carcinoma. Anticancer Res 2012, 32(2):681-686.
  • [9]Patel SG, Shah JP: TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 2005, 55(6):242-258.
  • [10]Ma BB, Chan AT: Recent perspectives in the role of chemotherapy in the management of advanced nasopharyngeal carcinoma. Cancer 2005, 103(1):22-31.
  • [11]Chua DT, Ma J, Sham JS, Mai HQ, Choy DT, Hong MH, Lu TX, Min HQ: Long-term survival after cisplatin-based induction chemotherapy and radiotherapy for nasopharyngeal carcinoma: a pooled data analysis of two phase III trials. J Clin Oncol 2005, 23(6):1118-1124.
  • [12]Hockel M, Vaupel P: Biological consequences of tumor hypoxia. Semin Oncol 2001, 28(2 Suppl 8):36-41.
  • [13]Cui X, Yu ZY, Wang W, Zheng YQ, Liu W, Li LX: Co-Inhibition of HSP70/HSP90 Synergistically Sensitizes Nasopharyngeal Carcinoma Cells to Thermotherapy. Integr Cancer Ther 2011. [Epub ahead of print]
  • [14]Gehrmann M, Radons J, Molls M, Multhoff G: The therapeutic implications of clinically applied modifiers of heat shock protein 70 (Hsp70) expression by tumor cells. Cell Stress Chaperones 2008, 13(1):1-10.
  • [15]Wei YQ, Zhao X, Kariya Y, Teshigawara K, Uchida A: Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunol Immunother 1995, 40(2):73-78.
  • [16]Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M: Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998, 17(21):6124-6134.
  • [17]Rerole AL, Jego G, Garrido C: Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol 2011, 787:205-230.
  • [18]Tong YQ, Zhang ZJ, Liu B, Huang J, Liu H, Liu Y, Guo FJ, Zhou GH, Xie PL, Li YH, Zuo CH, Hu JY, Li GC: Autoantibodies as potential biomarkers for nasopharyngeal carcinoma. Proteomics 2008, 8(15):3185-3193.
  • [19]Liao Q, Zhao L, Chen X, Deng Y, Ding Y: Serum proteome analysis for profiling protein markers associated with carcinogenesis and lymph node metastasis in nasopharyngeal carcinoma. Clin Exp Metastasis 2008, 25(4):465-476.
  • [20]Calderwood SK, Theriault JR, Gong J: How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperthermia 2005, 21(8):713-716.
  • [21]Srivastava PK: Immunotherapy for human cancer using heat shock protein-peptide complexes. Curr Oncol Rep 2005, 7(2):104-108.
  • [22]Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL: Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998, 8(6):657-665.
  • [23]Liu G, Yao K, Wang B, Zhou F, Chen Y, Li L, Chi J, Peng G: Reconstituted complexes of mycobacterial HSP70 and EBV LMP2A-derived peptides elicit peptide-specific cytotoxic T lymphocyte responses and anti-tumor immunity. Vaccine 2011, 29(45):7414-7423.
  • [24]Min H, Hong M, Ma J, Zhang E, Zheng Q, Zhang J, Zhang F, Su Y, Qiu F: A new staging system for nasopharyngeal carcinoma in China. Int J Radiat Oncol Biol Phys 1994, 30(5):1037-1042.
  • [25]Wang HY, Sun BY, Zhu ZH, Chang ET, To KF, Hwang JS, Jiang H, Kam MK, Chen G, Cheah SL, Lee M, Liu ZW, Chen J, Zhang JX, Zhang HZ, He JH, Chen FL, Zhu XD, Huang MY, Liao DZ, Fu J, Shao Q, Cai MB, Du ZM, Yan LX, Hu CF, Ng HK, Wee JT, Qian CN, Liu Q, Ernberg I, Ye W, Adami HO, Chan AT, Zeng YX, Shao JY: Eight-Signature Classifier for Prediction of Nasopharnyngeal Carcinoma Survival. J Clin Oncol 2011, 29(34):4516-4525.
  • [26]Cai MY, Tong ZT, Zhu W, Wen ZZ, Rao HL, Kong LL, Guan XY, Kung HF, Zeng YX, Xie D: H3K27me3 Protein Is a Promising Predictive Biomarker of Patients’ Survival and Chemoradioresistance in Human Nasopharyngeal Carcinoma. Mol Med 2011. [Epub ahead of print]
  • [27]Boroughs LK, Antonyak MA, Johnson JL, Cerione RA: A unique role for heat shock protein 70 and its binding partner tissue transglutaminase in cancer cell migration. J Biol Chem 2011, 286(43):37094-37107.
  • [28]Malusecka E, Krzyzowska-Gruca S, Gawrychowski J, Fiszer-Kierzkowska A, Kolosza Z, Krawczyk Z: Stress proteins HSP27 and HSP70i predict survival in non-small cell lung carcinoma. Anticancer Res 2008, 28(1B):501-506.
  • [29]Thubashini M, Malathi N, Kannan L: Expression of heat shock protein70 in oral submucous fibrosis and oral squamous cell carcinoma: an immunohistochemical study. Indian J Dent Res 2011, 22(2):256-259.
  • [30]Lu S, Tan Z, Wortman M, Dong Z: Regulation of heat shock protein 70–1 expression by androgen receptor and its signaling in human prostate cancer cells. Int J Oncol 2010, 36(2):459-467.
  • [31]Zeng Y, Chen X, Larmonier N, Larmonier C, Li G, Sepassi M, Marron M, Andreansky S, Katsanis E: Natural killer cells play a key role in the antitumor immunity generated by chaperone-rich cell lysate vaccination. Int J Cancer 2006, 119(11):2624-2631.
  • [32]Bei JX, Jia WH, Zeng YX: Familial and large-scale case–control studies identify genes associated with nasopharyngeal carcinoma. Semin Cancer Biol 2012, 22(2):96-106.
  • [33]Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, Cheng YJ, Westra WH, Chen CJ, Hildesheim A, Sugden B, Ahlquist P: Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res 2006, 66(16):7999-8006.
  • [34]Tang YL, Lu JH, Cao L, Wu MH, Peng SP, Zhou HD, Huang C, Yang YX, Zhou YH, Chen Q, Li XL, Zhou M, Li GY: Genetic variations of EBV-LMP1 from nasopharyngeal carcinoma biopsies: potential loss of T cell epitopes. Braz J Med Biol Res 2008, 41(2):110-116.
  • [35]Lin JC, Cherng JM, Lin HJ, Tsang CW, Liu YX, Lee SP: Amino acid changes in functional domains of latent membrane protein 1 of Epstein-Barr virus in nasopharyngeal carcinoma of southern China and Taiwan: prevalence of an HLA A2-restricted ‘epitope-loss variant’. J Gen Virol 2004, 85(7):2023-2034.
  • [36]Maranon C, Egui A, Carrilero B, Thomas MC, Pinazo MJ, Gascon J, Segovia M, Lopez MC: Identification of HLA-A *02:01-restricted CTL epitopes in Trypanosoma cruzi heat shock protein-70 recognized by Chagas disease patients. Microbes Infect 2011, 13(12–13):1025-1032.
  • [37]Okochi M, Hayashi H, Ito A, Kato R, Tamura Y, Sato N, Honda H: Identification of HLA-A24-restricted epitopes with high affinities to Hsp70 using peptide arrays. J Biosci Bioeng 2008, 105(3):198-203.
  • [38]Mizukami S, Kajiwara C, Tanaka M, Kaisho T, Udono H: Differential MyD88/IRAK4 requirements for cross-priming and tumor rejection induced by heat shock protein 70-model antigen fusion protein. Cancer Sci 2012. Epub ahead of print
  • [39]Tischer S, Basila M, Maecker-Kolhoff B, Immenschuh S, Oelke M, Blasczyk R, Eiz-Vesper B: Heat shock protein 70/peptide complexes: potent mediators for the generation of antiviral T cells particularly with regard to low precursor frequencies. J Transl Med 2011, 9:175. BioMed Central Full Text
  • [40]Liu G, Yao K, Wang B, Zhou F, Chen Y, Li L, Chi J, Peng G: Reconstituted complexes of mycobacterial HSP70 and EBV LMP2A-derived peptides elicit peptide-specific cytotoxic T lymphocyte responses and anti-tumor immunity. Vaccine 2011, 29(43):7414-7423.
  • [41]Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M: Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol 1998, 10(5):609-617.
  • [42]Dressel R, Lubbers M, Walter L, Herr W, Gunther E: Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. Eur J Immunol 1999, 29(12):3925-3935.
  • [43]Kumar S, Deepak P, Acharya A: Autologous Hsp70 immunization induces anti-tumor immunity and increases longevity and survival of tumor-bearing mice. Neoplasma 2009, 56(3):259-268.
  • [44]Tamura Y, Peng P, Liu K, Daou M, Srivastava PK: Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997, 278(5335):117-120.
  • [45]Srivastava PK: Immunotherapy of human cancer: lessons from mice. Nat Immunol 2000, 1(5):363-366.
  • [46]Parmiani G, Testori A, Maio M, Castelli C, Rivoltini L, Pilla L, Belli F, Mazzaferro V, Coppa J, Patuzzo R, et al.: Heat shock proteins and their use as anticancer vaccines. Clin Cancer Res 2004, 10(24):8142-8146.
  • [47]Nishikawa M, Otsuki T, Ota A, Guan X, Takemoto S, Takahashi Y, Takakura Y: Induction of tumor-specific immune response by gene transfer of Hsp70-cell-penetrating peptide fusion protein to tumors in mice. Mol Ther 2010, 18(2):421-428.
  • [48]Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M: Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 2005, 19(5):570-582.
  • [49]Welch WJ, Feramisco JR: Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 1984, 259(7):4501-4513.
  • [50]Kotoglou P, Kalaitzakis A, Vezyraki P, Tzavaras T, Michalis LK, Dantzer F, Jung JU, Angelidis C: Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones 2009, 14(4):391-406.
  文献评价指标  
  下载次数:0次 浏览次数:4次