期刊论文详细信息
Journal of Biomedical Science
Differential expression of microRNAs in decidua-derived mesenchymal stem cells from patients with pre-eclampsia
Yayi Hou1  Yali Hu2  Zhiqun Wang2  Hongye Fan1  Huishuang Miao1  Shiwen Chen2  Xue Zhou1  Guangfeng Zhao2 
[1] Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China;Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
关键词: Microarray;    miRNAs;    Mesenchymal stem cells;    Pre- eclampsia;   
Others  :  1146520
DOI  :  10.1186/s12929-014-0081-3
 received in 2014-02-07, accepted in 2014-08-12,  发布年份 2014
PDF
【 摘 要 】

Background

Mesenchymal stem cells (MSCs) at maternal-fetal interface are considered to play an important role in the pathogenesis of pre-eclampsia (PE). microRNAs (miRNAs) also have an important influence on differentiation, maturation, and functions of MSCs. Our aim in this study was to determine the differential expression of miRNAs in decidua-derived MSCs (dMSCs) from severe PE and normal pregnancies.

Results

miRNA expression profiles in dMSCs from five patients with severe PE and five healthy pregnant women were screened using microarray. Then, bioinformatic analysis of the microarray results was performed. Out of 179 differentially expressed miRNAs, 49 miRNAs had significant (p < 0.05) differential expression of ≥ 2.0-fold changes, including 21 up-regulated and 28 down-regulated. miRNA-Gene-network and miRNA-Gene ontology (GO) -network analyses were performed. Overall, 21 up-regulated and 15 down-regulated miRNAs showed high degrees in these analyses. Moreover, the significantly enriched signaling pathways and GOs were identified. The analyses revealed that pathways associated with cell proliferation, angiogenesis, and immune functions were highly regulated by the differentially expressed miRNAs, including Wnt signaling pathway, mitogen-activated protein kinase signaling pathway, transforming growth factor beta signaling pathway, T-cell receptor signaling pathway, and B cell receptor signaling pathway. Four miRNA predicted target genes, vascular endothelial growth factor A (VEGFA), indoleamine 2,3-dioxygenase, suppression of cytokine signaling 3, and serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B α isoform (PPP2R2A) were all decreased in dMSCs from patients with PE. Furthermore, the physiological roles of miR-16 and miR-136 in the down-regulation of VEGFA and PPP2R2A, respectively, were confirmed through reporter assays.

Conclusions

These findings suggest that miRNAs in dMSCs may be important regulatory molecules in the development of PE.

【 授权许可】

   
2014 Zhao et al.; licensee BioMed Central

【 预 览 】
附件列表
Files Size Format View
20150403125416311.pdf 2082KB PDF download
Figure 5. 24KB Image download
Figure 4. 36KB Image download
Figure 3. 96KB Image download
Figure 2. 60KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Zhou CC, Zhang YJ, Irani RA: Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med 2008, 14:855-862.
  • [2]Redman CW, Sargent IL: Latest advances in understanding pre-eclampsia. Science 2005, 308:1592-1594.
  • [3]Kanasaki K, Kalluri R: The biology of preeclampsia. Kidney Int 2009, 76:831-837.
  • [4]Goldman-Wohl DS, Yagel S: Examination of distinct fetal and maternal molecular pathways suggests a mechanism for the development of preeclampsia. J Reprod Immunol 2007, 76:54-60.
  • [5]Rolfo A, Giuffrida D, Nuzzo AM: Pro-inflammatory profile of preeclamptic placental mesenchymal stromal cells: new insights into the etiopathogenesis of preeclampsia. PLoS One 2013, 8(3):e59403.
  • [6]Erlebacher A: Immunology of the maternal-fetal interface. Annu Rev Immunol 2013, 31:387-411.
  • [7]Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM: Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006, 12:642-649.
  • [8]Verlohren I, Stepan H, Dechend R: Angiogenic growth factors in the diagnosis and prediction of pre-eclampsia. Clin Sci 2012, 122:43-52.
  • [9]Pijnenborg R, Vercruysse L, Hanssens M: The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006, 7:939-958.
  • [10]Perni EU, Sison C, Sharma V, Helseth G, Hawfield A, Suthanthiran M: Angiogenic Factors in Superimposed Preeclampsia A Longitudinal Study of Women With Chronic Hypertension During Pregnancy. Hypertension 2012, 59:740-746.
  • [11]Karahuseyinoglu S, Cinar O, Kilic E: Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 2007, 25:319-331.
  • [12]Liu L, Zhao X, Li P, Zhao G, Wang Y, Hou Y: A novel way to isolate MSCs from umbilical cords. Eur J Immunol 2012, 42:2190-2193.
  • [13]Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ: The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 2013, 19(1):35-42.
  • [14]Crop MJ, Baan CC, Korevaar SS: Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation. Stem Cells Dev 2010, 19:1843-1853.
  • [15]Asari S, Itakura S, Ferreri K: Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 2009, 37:604-615.
  • [16]Giuliani M, Oudrhiri N, Noman ZM: Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood 2011, 118:3254-3262.
  • [17]Spaggiari GM, Abdelrazik H, Becchetti F: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 2009, 113:6576-6583.
  • [18]Zhang Q, Shi S, Liu Y: Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 2009, 183:7787-7798.
  • [19]Sun L, Wang D, Liang J: Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 2010, 62:2467-2475.
  • [20]Sun L, Akiyama K, Zhang H: Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cell 2009, 27:1421-1432.
  • [21]Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS: Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 2013, 8(8):e72604.
  • [22]Cutler AJ, Limbani V, Girdlestone J: Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 2010, 185:6617-6623.
  • [23]Atkinson K, Chatterjee K, Barlow S: Potential for mesenchymal stem cell isolation from human placenta. Blood 2005, 106:158b-158b.
  • [24]Schwab KE, Gargett CE: Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 2007, 22:2903-2911.
  • [25]Hwang JH, Lee MJ, Seok OS: Cytokine expression in placentaderived mesenchymal stem cells in patients with pre-eclampsia and normal pregnancies. Cytokine 2010, 49:95-101.
  • [26]Benian A, Uzun H, Aydin S: Placental stem cell markers in preeclampsia. Int J Gynaecol Obstet 2008, 100:228-233.
  • [27]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [28]Small EM, Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature 2011, 469:336-342.
  • [29]Di Leva G, Calin GA, Croce CM: MicroRNAs: fundamental facts and involvement in human diseases. Birth Defects Res C Embryo Today 2006, 78:180-189.
  • [30]Heinrich EM, Dimmeler S: MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ Res 2012, 110:1014-1022.
  • [31]Leonardo TR, Schultheisz HL, Loring JF, Laurent LC: The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 2012, 14:1114-1121.
  • [32]Noack F, Ribbat-Idel J, Thorns C, Chiriac A, Axt-Fliedner R, Diedrich K: miRNA expression profiling in formalin-fixed and paraffin-embedded placental tissue samples from pregnancies with severe preeclampsia. J Perinat Med 2011, 39:267-271.
  • [33]Hu Y, Li P, Hao S, Liu L, Zhao J, Hou Y: Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin Chem Lab Med 2009, 47:923-929.
  • [34]Castrechini NM, Murthi P, Qin S, Kusuma GD, Wilton L, Abumaree M, Gronthos S, Zannettino A, Gude NM, Brennecke SP, Kalionis B: Decidua parietalis-derived mesenchymal stromal cells reside in a vascular niche within the choriodecidua. Reprod Sci 2012, 19(12):1302-1314.
  • [35]Kanematsu D, Shofuda T, Yamamoto A, Ban C, Ueda T, Yamasaki M, Kanemura Y: Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Differentiation 2011, 82(2):77-88.
  • [36]Hass R, Kasper C, Böhm S, Jacobs R: Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011, 9:12. BioMed Central Full Text
  • [37]Wang Y, Fan H, Zhao G, Liu D, Du L, Wang Z, Hu Y, Hou Y: miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J 2012, 279(24):4510-4524.
  • [38]Cheng Y, Liu W, Kim ST, Sun J, Lu L, Sun J, Zheng SL, Isaacs WB, Xu J: Evaluation of PPP2R2A as a prostate cancer susceptibility gene: a comprehensive germline and somatic study. Cancer Genet 2011, 204(7):375-381.
  • [39]Zhou C, Zhang X, Xu L, Wu T, Cui L, Xu D: Taurine promotes human mesenchymal stem cells to differentiate into osteoblast through the ERK pathway.Amino Acids 2014, [Epub ahead of print].
  • [40]Xu D, Xu L, Zhou C, Lee WY, Wu T, Cui L, Li G: Salvianolic acid B promotes osteogenesis of human mesenchymal stem cells through activating ERK signaling pathway. Int J Biochem Cell Biol 2011, 51C:1-9.
  • [41]Roberts JM, Hubel CA: The two stage model of preeclampsia: variations on the theme. Placenta 2009, 30:S32-S37.
  • [42]Shen S, Yue H, Li Y, Qin J, Li K, Liu Y, Wang J: Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A. Tumour Biol 2014, 35(1):631-640.
  • [43]Li P, Guo W, Du L, Zhao J, Wang Y, Liu L, Hu Y, Hou Y: microRNA-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin Sci (Lond) 2013, 124(1):27-40.
  • [44]Liu L, Wang Y, Fan H, Zhao X, Liu D, Hu Y, Kidd AR 3rd, Bao J, Hou Y: MicroRNA-181a regulates local immune balance by inhibiting proliferation and immunosuppressive properties of mesenchymal stem cells. Stem Cells 2012, 30(8):1756-1770.
  • [45]Maynard SE, Karumanchi SA: Angiogenic factors and preeclampsia. Semin Nephrol 2011, 31:33-46.
  • [46]Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S: Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009, 23(3):806-812.
  • [47]Huang QB, Ma X, Zhang X, Liu SW, Ai Q, Shi TP, Zhang Y, Gao Y, Fan Y, Ni D, Wang BJ, Li HZ, Zheng T: Down-Regulated miR-30a in Clear Cell Renal Cell Carcinoma Correlated with Tumor Hematogenous Metastasis by Targeting Angiogenesis-Specific DLL4. PLoS One 2013, 8(6):e67294.
  • [48]Grundmann S, Hans FP, Kinniry S, Heinke J, Helbing T, Bluhm F, Sluijter JP, Hoefer I, Pasterkamp G, Bode C, Moser M: MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation 2011, 123(9):999-1009.
  • [49]Zhou R, Li X, Hu G, Gong AY, Drescher KM, Chen XM: miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene. PLoS One 2012, 7(1):e30772.
  • [50]Liston A, Papadopoulou AS, Danso-Abeam D, Dooley J: MicroRNA-29 in the adaptive immune system: setting the threshold. Cell Mol Life Sci 2012, 69(21):3533-3541.
  • [51]Schmitt MJ, Margue C, Behrmann I, Kreis S: MiRNA-29: a microRNA family with tumor-suppressing and immune-modulating properties. Curr Mol Med 2013, 13(4):572-585.
  • [52]Wang C, Song X, Li Y, Han F, Gao S, Wang X, Xie S, Lv C: Low-Dose Paclitaxel Ameliorates Pulmonary Fibrosis by Suppressing TGF-β1/Smad3 Pathway via miR-140 Upregulation. PLoS One 2013, 8(8):e70725.
  • [53]Liu Y, Dong J, Mu R, Gao Y, Tan X, Li Y, Li Z, Yang G: MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum 2013, 65(6):1603-1611.
  • [54]Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A, Monticelli S: MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol 2009, 182(1):433-445.
  文献评价指标  
  下载次数:0次 浏览次数:6次