期刊论文详细信息
Journal of Translational Medicine
Risk factors in the development of stem cell therapy
Harm PH Hermsen1  Marcel SG Kwa2  Carla A Herberts1 
[1] Centre for Biological Medicines and Medical Technology, National Institute for Public Health and the Environment, A. v. Leeuwenhoeklaan 9, P.O.Box 1, 3720 BA, Bilthoven, The Netherlands;Department of Pharmacovigilance, Netherlands Medicines Evaluation Board, Kalvermarkt 53, 2511 CB, Den Haag, The Netherlands
关键词: cell based medicinal product;    SSC;    iPSC;    ESC;    clinical;    immunology;    tumour;    stem cells;    medicinal product;    risk;    advanced therapy;    stem cell therapy;   
Others  :  1207989
DOI  :  10.1186/1479-5876-9-29
 received in 2010-07-20, accepted in 2011-03-22,  发布年份 2011
PDF
【 摘 要 】

Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC) has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products.

The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience) or potential/theoretical risks (i.e. risks observed in animal studies) include tumour formation, unwanted immune responses and the transmission of adventitious agents.

Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC). Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation) are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC) in regenerative medicine applications has not reported major health concerns, suggesting that MSC therapies could be relatively safe. However, in some clinical trials serious adverse events have been reported, which emphasizes the need for additional knowledge, particularly with regard to biological mechanisms and long term safety.

【 授权许可】

   
2011 Herberts et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150530122446747.pdf 336KB PDF download
【 参考文献 】
  • [1]Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292:154-156.
  • [2]Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America 1981, 78:7634-7638.
  • [3]Thomson JA: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282:1145-1147.
  • [4]Solter D: From teratocarcinomas to embryonic stem cells and beyond: A history of embryonic stem cell research. Nature Reviews Genetics 2006, 7:319-327.
  • [5]Lengner CJ: IPS cell technology in regenerative medicine. Book IPS cell technology in regenerative medicine 2010, 1192:38-44. City; 38-44
  • [6]Bradley A, Evans M, Kaufman MH, Robertson E: Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984, 309:255-256.
  • [7]Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A: Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology 2000, 18:399-404.
  • [8]Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
  • [9]Okita K, Ichisaka T, Yamanaka S: Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448:313-317.
  • [10]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131:861-872.
  • [11]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2006, 131:861-872.
  • [12]Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology 2008, 26:1276-1284.
  • [13]Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, et al.: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008, 321:1218-1221.
  • [14]Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R: A Drug-Inducible System for Direct Reprogramming of Human Somatic Cells to Pluripotency. Cell Stem Cell 2008, 3:346-353.
  • [15]Takahashi K, Yamanaka S: Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126:663-676.
  • [16]Yu J, Thomson JA: Pluripotent stem cell lines. Genes and Development 2008, 22:1987-1997.
  • [17]Saric T, Hescheler J: Stem cells and nuclear reprogramming. Minimally Invasive Therapy and Allied Technologies 2008, 17:64-78.
  • [18]Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS: MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells. Cell 2009, 137:647-658.
  • [19]Geoghegan E, Byrnes L: Mouse induced pluripotent stem cells. International Journal of Developmental Biology 2008, 52:1015-1022.
  • [20]Pessina A, Gribaldo L: The key role of adult stem cells: Therapeutic perspectives. Current Medical Research and Opinion 2006, 22:2287-2300.
  • [21]Koch P, Kokaia Z, Lindvall O, Brustle O: Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. The Lancet Neurology 2009, 8:819-829.
  • [22]Taupin P, Gage FH: Adult neurogenesis and neural stem cells of the central nervous system in mammals. Journal of Neuroscience Research 2002, 69:745-749.
  • [23]Pappa KI, Anagnou NP: Novel sources of fetal stem cells: Where do they fit on the developmental continuum? Regenerative Medicine 2009, 4:423-433.
  • [24]De Coppi P, Bartsch Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, et al.: Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology 2007, 25:100-106.
  • [25]Prusa AR, Marton E, Rosner M, Bernaschek G, HengstschlaÝĝer M: Oct-4-expressing cells in human amniotic fluid: A new source for stem cell research? Human Reproduction 2003, 18:1489-1493.
  • [26]Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp D, Tukun A, Uckan D, Can A: Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells 2007, 25:319-331.
  • [27]Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, Conway S, Orkin SH, Yoder MC, Mikkola HKA: The Emergence of Hematopoietic Stem Cells Is - Initiated in the Placental Vasculature in the Absence of Circulation. Cell Stem Cell 2008, 2:252-263.
  • [28]Prockop DJ, Olson SD: Clinical trials with adult stem/progenitor cells for tissue repair: Let's not overlook some essential precautions. Blood 2007, 109:3147-3151.
  • [29]Horwitz EM, Prockop DJ, Gordon PL, Koo WWK, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK: Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001, 97:1227-1231.
  • [30]Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W: Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplantation 2002, 30:215-222.
  • [31]Lasala GP, Minguell JJ: Bone Marrow-derived Stem/Progenitor Cells: Their Use in Clinical Studies for the Treatment of Myocardial Infarction. Heart Lung and Circulation 2009, 18:171-180.
  • [32]Bieback K, Kluter H: Mesenchymal stromal cells from umbilical cord blood. Current Stem Cell Research and Therapy 2007, 2:310-323.
  • [33]Giordano A, Galderisi U, Marino IR: From the laboratory bench to the patient's bedside: An update on clinical trials with Mesenchymal Stem Cells. Journal of Cellular Physiology 2007, 211:27-35.
  • [34]Aranguren XL, Verfaillie CM, Luttun A: Emerging hurdles in stem cell therapy for peripheral vascular disease. Journal of Molecular Medicine 2009, 87:3-16.
  • [35]ISO/IEC Guide 51:1999 [http://www.iso.org/iso/iso_catalogue.htm] webcite
  • [36]ISO 14971:2007 [http://www.iso.org/iso/iso_catalogue.htm] webcite
  • [37]ICH Q9: Quality Risk Management [http://www.ich.org/products/guidelines.html] webcite
  • [38]Guideline on risk management systems for medical products for human use, EMEA/CHMP/96268/2005 [http://www.ema.europa.eu] webcite
  • [39]Li HC, Soticov C, Rogers AB, Houghton JM: Stem cells and cancer: Evidence for bone marrow stem cells in epithelial cancers. World Journal of Gastroenterology 2006, 12:363-371.
  • [40]Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith MJ, Dingwall S, Carter T, et al.: Characterization of human embryonic stem cells with features of neoplastic progression. Nature Biotechnology 2009, 27:91-97.
  • [41]Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, et al.: Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine 2009, 6:0221-0231.
  • [42]Shih CC, Forman SJ, Chu P, Slovak M: Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells and Development 2007, 16:893-902.
  • [43]Knoepfler PS: Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells 2009, 27:1050-1056.
  • [44]Hamburger AW, Salmon SE: Primary bioassay of human tumor stem cells. Science 1977, 197:461-463.
  • [45]Bruce WR, Van Der Gaag H: A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963, 199:79-80.
  • [46]Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC: Gastric cancer originating from bone marrow-derived cells. Science 2004, 306:1568-1571.
  • [47]Stark A, Aparisi T, Ericsson JLE: Human osteogenic sarcoma: Fine structure of the osteoblastic type. Ultrastructural Pathology 1983, 4:311-329.
  • [48]Barozzi P, Luppi M, Faccheti F, Mecucci C, Alu M, Sarid R, Rasini V, Ravazzini L, Rossi E, Festa S, et al.: Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nature Medicine 2003, 9:554-561.
  • [49]Aractingi S, Kanitakis J, Euvrard S, Le Danff C, Peguillet I, Khosrotehrani K, Lantz O, Carosella ED: Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Research 2005, 65:1755-1760.
  • [50]Janin A, Murata H, Leboeuf C, Cayuela JM, Gluckman E, Legres L, Desveaux A, Varna M, Ratajczak P, Soulier J, et al.: Donor-derived oral squamous cell carcinoma after allogeneic bone marrow transplantation. Blood 2009, 113:1834-1840.
  • [51]Ades L, Guardiola P, Socie G: Second malignancies after allogeneic hematopoietic stem cell transplantation: New insight and current problems. Blood Reviews 2002, 16:135-146.
  • [52]Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS, Kassem M: Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells and Development 2009, 18:47-54.
  • [53]Erdo F, Buhrle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Focking M, Kustermann E, Kolossov E, Hescheler J, et al.: Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. Journal of Cerebral Blood Flow and Metabolism 2003, 23:780-785.
  • [54]Narva E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor J, Rasool O, Dvorak P, et al.: High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nature Biotechnology 2010, 28:371-377.
  • [55]Rodriguez R, Rubio R, Masip M, Catalina P, Nieto A, De La Cueva T, Arriero M, Martin NS, De La Cueva E, Balomenos D, et al.: Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells. Neoplasia 2009, 11:397-407.
  • [56]Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, Stoicov C, Kurt-Jones E, Grossman SR, Lyle S, et al.: Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: A model of age-related tumorigenesis in mice. Cancer Research 2007, 67:10889-10898.
  • [57]Miura Y, Gao Z, Miura M, Seo BM, Sonoyama W, Chen W, Gronthos S, Zhang L, Shi S: Mesenchymal stem cell-organized bone marrow elements: An alternative hematopoietic progenitor resource. Stem Cells 2006, 24:2428-2436.
  • [58]Siebzehnrubl FA, Jeske I, Muller D, Buslei R, Coras R, Hahnen E, Huttner HB, Corbeil D, Kaesbauer J, Appl T, et al.: Spontaneous in vitro transformation of adult neural precursors into stem-like cancer cells. Brain Pathology 2009, 19:399-408.
  • [59]Kassem M, Burns JS, Castro JG, Munoz DR: Adult stem cells and cancer (multiple letters). Cancer Research 2005, 65:9601.
  • [60]Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, et al.: Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research 2007, 67:9142-9149.
  • [61]Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M, et al.: Clinical-grade production of human mesenchymal stromal cells: Occurrence of aneuploidy without transformation. Blood 2010, 115:1549-1553.
  • [62]Rubio D, Garcia-Castro J, Martin MC, De La Fuente R, Cigudosa JC, Lloyd AC, Bernad A: Spontaneous human adult stem cell transformation. Cancer Research 2005, 65:3035-3039.
  • [63]Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE, et al.: Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Research 2009, 69:5331-5339.
  • [64]Garcia S, Martin MC, De La Fuente R, Cigudosa JC, Garcia-Castro J, Bernad A: Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Experimental Cell Research 2010, 316:1648-1650.
  • [65]Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E, Lonning PE, Primon M, Sobala E, Tonn JC, et al.: Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: Putting the research field on track - Letter. Cancer Research 2010, 70:6393-6396.
  • [66]De La Fuente R, Bernad A, Garcia-Castro J, Martin MC, Cigudosa JC: Retraction: Spontaneous human adult stem cell transformation (Cancer Research (2005) 1). Cancer Research 2010, 70:6682.
  • [67]Lucas S: Chromosomal instability and mesenchymal stem cells. Human Gene Therapy 2009, 20:657-664.
  • [68]Sensebe L, Tarte K, Lataillade JJ, Fouillard L, Rouard H, Tirchkov A, Vernant JP, Gorin NC: Clinical-grade mesenchymal stem/stromal cells: Aneuploidy is not transformation. Human Gene Therapy 2009, 20:657-664.
  • [69]Lepperdinger G, Brunauer R, Jamnig A, Laschober G, Kassem M: Controversial issue: Is it safe to employ mesenchymal stem cells in cell-based therapies? Experimental Gerontology 2008, 43:1018-1023.
  • [70]Bushman FD: Retroviral integration and human gene therapy. Journal of Clinical Investigation 2007, 117:2083-2086.
  • [71]Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, et al.: LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1. Science 2003, 302:415-419.
  • [72]Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009, 458:771-775.
  • [73]Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, et al.: Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors. Cell 2009, 136:964-977.
  • [74]Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, et al.: PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009, 458:766-770.
  • [75]Esteban MA, Gan Y, Qin D, Pei D: Induced pluripotent stem cell (iPS) technology: Promises and challenges. Chinese Science Bulletin 2009, 54:2-8.
  • [76]Yamanaka S: A Fresh Look at iPS Cells. Cell 2009, 137:13-17.
  • [77]Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science 2008, 322:945-949.
  • [78]Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008, 322:949-953.
  • [79]Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology 2008, 26:1269-1275.
  • [80]Shi Y, Tae Do J, Desponts C, Hahm HS, Scholer HR, Ding S: A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell 2008, 2:525-528.
  • [81]Uccelli A, Moretta L, Pistoia V: Mesenchymal stem cells in health and disease. Nature Reviews Immunology 2008, 8:726-736.
  • [82]Lazennec G, Jorgensen C: Concise review: Adult multipotent stromal cells and cancer: Risk or benefit? Stem Cells 2008, 26:1387-1394.
  • [83]Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J, Yu Z, Li B, Xu C, Li Y, et al.: The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: Outcome of a pilot clinical study. Leukemia 2008, 22:593-599.
  • [84]Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C: Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003, 102:3837-3844.
  • [85]Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 449:557-563.
  • [86]Nussbaum J, Minami E, Laflamme MA, Virag JAI, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE: Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal 2007, 21:1345-1357.
  • [87]Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, Bhatia M: Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004, 22:448-456.
  • [88]Drukker M, Katchman H, Katz G, Friedman SET, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N: Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 2006, 24:221-229.
  • [89]Mohib K, Allan D, Wang L: Human Embryonic Stem Cell-extracts Inhibit the Differentiation and Function of Monocyte-derived Dendritic Cells. Stem Cell Reviews and Reports 2010, 6:611-621.
  • [90]Nasef A, Ashammakhi N, Fouillard L: Immunomodulatory effect of mesenchymal stromal cells: Possible mechanisms. Regenerative Medicine 2008, 3:531-546.
  • [91]Chamberlain G, Fox J, Ashton B, Middleton J: Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007, 25:2739-2749.
  • [92]Nakatsuji N, Nakajima F, Tokunaga K: HLA-haplotype banking and iPS cells. Nature Biotechnology 2008, 26:739-740.
  • [93]Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, et al.: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. The Lancet 2008, 371:1579-1586.
  • [94]Kainer MA, Linden JV, Whaley DN, Holmes HT, Jarvis WR, Jernigan DB, Archibald LK: Clostridium infections associated with musculoskeletal-tissue allografts. NEnglJMed 2004, 350:2564-2571.
  • [95]Tugwell BD, Patel PR, Williams IT, Hedberg K, Chai F, Nainan OV, Thomas AR, Woll JE, Bell BP, Cieslak PR: Transmission of hepatitis C virus to several organ and tissue recipients from an antibody-negative donor. AnnInternMed 2005, 143:648-654.
  • [96]Sundin M, Orvell C, Rasmusson I, Sundberg B, Ringden O, Le Blanc K: Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplantation 2006, 37:1051-1059.
  • [97]Martin MJ, Muotri A, Gage F, Varki A: Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine 2005, 11:228-232.
  • [98]Menasche P: Stem cell therapy for heart failure: Are arrhythmias a real safety concern? Circulation 2009, 119:2735-2740.
  • [99]Grigg A, Gibson R, Bardy P, Szer J: Acute portal vein thrombosis after autologous stem cell transplantation. Bone Marrow Transplantation 1996, 18:949-953.
  • [100]Kikuchi K, Rudolph R, Murakami C, Kowdley K, McDonald GB: Portal vein thrombosis after hematopoietic cell transplantation: Frequency, treatment and outcome. Bone Marrow Transplantation 2002, 29:329-333.
  • [101]Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JWU, Tiemann K, Bohlen H, Hescheler J, et al.: Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007, 110:1362-1369.
  • [102]Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D: Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson's disease. JNeurosci 2007, 27:8011-8022.
  • [103]Vogel G: To scientists' dismay, mixed-up cell lines strike again. Science 2010, 329:1004.
  • [104]Ruckdeschel Smith R, Barile L, Messina E, Marban E: Stem cells in the heart: What's the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm 2008, 5:880-887.
  • [105]Germani A, Di Campli C, Pompilio G, Biglioli P, Capogrossi MC: Regenerative therapy in peripheral artery disease. Cardiovascular Therapeutics 2009, 27:289-304.
  • [106]Tendera M, Wojakowski W: Cell therapy - Success does not come easy. European Heart Journal 2009, 30:640-641.
  • [107][http:/ / www.fiercebiotech.com/ story/ geron-offers-reassurance-its-esc-sa fety-record/ 2009-08-27] webcite
  • [108]Guideline on the safety and efficacy follow-up - risk management of advanced therapy medicinal products, EMEA/149995/2008 [http://www.ema.europa.eu] webcite
  • [109]Pearson JD: Endothelial progenitor cells - Hype or hope? Journal of Thrombosis and Haemostasis 2009, 7:255-262.
  文献评价指标  
  下载次数:6次 浏览次数:20次