Journal of Translational Medicine | |
A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer | |
George Coukos2  Rosemarie Mick1  Klara Balint2  Greg Motz2  Janos Tanyi2  Cheryl L Chiang2  Lana E Kandalaft2  | |
[1] Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA, USA | |
关键词: Cyclophosphamide; Bevacizumab; HOCl; Tumor vaccine; Immunotherapy; Recurrent ovarian cancer; | |
Others : 1205876 DOI : 10.1186/1479-5876-11-149 |
|
received in 2013-04-17, accepted in 2013-06-12, 发布年份 2013 | |
【 摘 要 】
Purpose
Ovarian cancer, like most solid tumors, is in dire need of effective therapies. The significance of this trial lies in its promise to spearhead the development of combination immunotherapy and to introduce novel approaches to therapeutic immunomodulation, which could enable otherwise ineffective vaccines to achieve clinical efficacy.
Rationale
Tumor-infiltrating T cells have been associated with improved outcome in ovarian cancer, suggesting that activation of antitumor immunity will improve survival. However, molecularly defined vaccines have been generally disappointing. Cancer vaccines elicit a modest frequency of low-to-moderate avidity tumor-specific T-cells, but powerful tumor barriers dampen the engraftment, expansion and function of these effector T-cells in the tumor, thus preventing them from reaching their full therapeutic potential. Our work has identified two important barriers in the tumor microenvironment: the blood-tumor barrier, which prevents homing of effector T cells, and T regulatory cells, which inactivate effector T cells. We hypothesize that cancer vaccine therapy will benefit from combinations that attenuate these two barrier mechanisms.
Design
We propose a three-cohort sequential study to investigate a combinatorial approach of a new dendritic cell (DC) vaccine pulsed with autologous whole tumor oxidized lysate, in combination with antiangiogenesis therapy (bevacizumab) and metronomic cyclophosphamide, which impacts Treg cells.
Innovation
This study uses a novel autologous tumor vaccine developed with 4-day DCs pulsed with oxidized lysate to elicit antitumor response. Furthermore, the combination of bevacizumab with a whole tumor antigen vaccine has not been tested in the clinic. Finally the combination of bevacizumab and metronomic cyclophosphamide in immunotherapy is novel.
【 授权许可】
2013 Kandalaft et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150526102625298.pdf | 978KB | download | |
Figure 4. | 96KB | Image | download |
Figure 3. | 79KB | Image | download |
Figure 2. | 75KB | Image | download |
Figure 1. | 53KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Disis ML, Schiffman K: Cancer vaccines targeting the HER2/neu oncogenic protein. Semin Oncol 2001, 28:12-20.
- [2]Hellstrom I, Goodman G, Pullman J, Yang Y, Hellstrom KE: Overexpression of HER-2 in ovarian carcinomas. Cancer Res 2001, 61:2420-2423.
- [3]Murray JL, Przepiorka D, Ioannides CG: Clinical trials of HER-2/neu-specific vaccines. Semin Oncol 2000, 27:71-75. discussion 92–100
- [4]Shih Ie M, Kurman RJ: Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004, 164:1511-1518.
- [5]Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, Intengan M, Beck A, Keitz B, Santiago D, Williamson B, Scanlan MJ, Ritter G, Chen YT, Driscoll D, Sood A, Lele S, Old LJ: NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res 2003, 63:6076-6083.
- [6]Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ: A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 1998, 187:1349-1354.
- [7]Santomasso BD, Roberts WK, Thomas A, Williams T, Blachere NE, Dudley ME, Houghton AN, Posner JB, Darnell RB: A T cell receptor associated with naturally occurring human tumor immunity. Proc Natl Acad Sci USA 2007, 104(48):19073-8.
- [8]Counter CM, Hirte HW, Bacchetti S, Harley CB: Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci U S A 1994, 91:2900-2904.
- [9]Vonderheide RH, Hahn WC, Schultze JL, Nadler LM: The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999, 10:673-679.
- [10]Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997, 94:1914-1918.
- [11]Andersen MH: thor SP: Survivin–a universal tumor antigen. Histol Histopathol 2002, 17:669-675.
- [12]Otto K, Andersen MH, Eggert A, Keikavoussi P, Pedersen LO, Rath JC, Bock M, Brocker EB, Straten PT, Kampgen E, Becker JC: Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 2005, 23:884-889.
- [13]Babcock B, Anderson BW, Papayannopoulos I, Castilleja A, Murray JL, Stifani S, Kudelka AP, Wharton JT, Ioannides CG: Ovarian and breast cytotoxic T lymphocytes can recognize peptides from the amino enhancer of split protein of the Notch complex. Mol Immunol 1998, 35:1121-1133.
- [14]Peoples GE, Anderson BW, Fisk B, Kudelka AP, Wharton JT, Ioannides CG: Ovarian cancer-associated lymphocyte recognition of folate binding protein peptides. Ann Surg Oncol 1998, 5:743-750.
- [15]Luby TM, Cole G, Baker L, Kornher JS, Ramstedt U, Hedley ML: Repeated immunization with plasmid DNA formulated in poly(lactide-co-glycolide) microparticles is well tolerated and stimulates durable T cell responses to the tumor-associated antigen cytochrome P450 1B1. Clin Immunol 2004, 112:45-53.
- [16]Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M: MUC1 and cancer. Biochim Biophys Acta 1999, 1455:301-313.
- [17]Ghazizadeh M, Ogawa H, Sasaki Y, Araki T, Aihara K: Mucin carbohydrate antigens (T, Tn, and sialyl-Tn) in human ovarian carcinomas: relationship with histopathology and prognosis. Hum Pathol 1997, 28:960-966.
- [18]Holmberg LA, Oparin DV, Gooley T, Lilleby K, Bensinger W, Reddish MA, MacLean GD, Longenecker BM, Sandmaier BM: Clinical outcome of breast and ovarian cancer patients treated with high-dose chemotherapy, autologous stem cell rescue and THERATOPE STn-KLH cancer vaccine. Bone Marrow Transplant 2000, 25:1233-1241.
- [19]Miles D, Papazisis K: Rationale for the clinical development of STn-KLH (Theratope) and anti-MUC-1 vaccines in breast cancer. Clin Breast Cancer 2003, 3(Suppl 4):S134-S138.
- [20]Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003, 348:203-213.
- [21]Adams SF, Levine DA, Cadungog MG, Hammond R, Facciabene A, Olvera N, Rubin SC, Boyd J, Gimotty PA, Coukos G: Intraepithelial T cells and tumor proliferation: impact on the benefit from surgical cytoreduction in advanced serous ovarian cancer. Cancer 2009, 115:2891-2902.
- [22]Clarke B, Tinker AV, Lee C, Subramanian S, Van De Rijn M, Turbin D, Kalloger S, Cadungog MG, Huntsman D, Coukos G, Gilks CB: Intraepithelial T cells and Prognosis in Ovarian Carcinoma: Novel Associations with Stage, Tumor Type and BRCA1 Loss. Mod Pathol 2008. In Press
- [23]Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S: Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 2007, 104:3360-3365.
- [24]Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K: Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005, 102:18538-18543.
- [25]Shah CA, Allison KH, Garcia RL, Gray HJ, Goff BA, Swisher EM, Shah CA, Allison KH, Garcia RL, Gray HJ, Goff BA, Swisher EM: Intratumoral T cells, tumor-associated macrophages, and regulatory T cells: Association with p53 mutations, circulating tumor DNA and survival in women with ovarian cancer. Gynecol Oncol 2008, 109(2):215-9. Epub 2008 Mar 7
- [26]Tomsova M, Melichar B, Sedlakova I, Steiner I: Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol 2008, 108:415-420.
- [27]Stumpf M, Hasenburg A, Riener MO, Jutting U, Wang C, Shen Y, Orlowska-Volk M, Fisch P, Wang Z, Gitsch G, Werner M, Lassmann S: Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 2009, 101:1513-1521.
- [28]Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH: Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 2009, 4:e6412.
- [29]Halapi E, Yamamoto Y, Juhlin C, Jeddi-Tehrani M, Grunewald J, Andersson R, Hising C, Masucci G, Mellstedt H, Kiessling R: Restricted T cell receptor V-beta and J-beta usage in T cells from interleukin-2-cultured lymphocytes of ovarian and renal carcinomas. Cancer Immunol Immunother 1993, 36:191-197.
- [30]Hayashi K, Yonamine K, Masuko-Hongo K, Iida T, Yamamoto K, Nishioka K, Kato T: Clonal expansion of T cells that are specific for autologous ovarian tumor among tumor-infiltrating T cells in humans. Gynecol Oncol 1999, 74:86-92.
- [31]Dadmarz RD, Ordoubadi A, Mixon A, Thompson CO, Barracchini KC, Hijazi YM, Steller MA, Rosenberg SA, Schwartzentruber DJ: Tumor-infiltrating lymphocytes from human ovarian cancer patients recognize autologous tumor in an MHC class II-restricted fashion. Cancer J Sci Am 1996, 2:263-272.
- [32]Fisk B, Blevins TL, Wharton JT, Ioannides CG: Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 1995, 181:2109-2117.
- [33]Kooi S, Freedman RS, Rodriguez-Villanueva J, Platsoucas CD: Cytokine production by T-cell lines derived from tumor-infiltrating lymphocytes from patients with ovarian carcinoma: tumor-specific immune responses and inhibition of antigen-independent cytokine production by ovarian tumor cells. Lymphokine Cytokine Res 1993, 12:429-437.
- [34]Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ: Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995, 92:432-436.
- [35]Peoples GE, Schoof DD, Andrews JV, Goedegebuure PS, Eberlein TJ: T-cell recognition of ovarian cancer. Surgery 1993, 114:227-234.
- [36]Santin AD, Bellone S, Ravaggi A, Pecorelli S, Cannon MJ, Parham GP: Induction of ovarian tumor-specific CD8+ cytotoxic T lymphocytes by acid-eluted peptide-pulsed autologous dendritic cells. Obstet Gynecol 2000, 96:422-430.
- [37]Schlienger K, Chu CS, Woo EY, Rivers PM, Toll AJ, Hudson B, Maus MV, Riley JL, Choi Y, Coukos G, Kaiser LR, Rubin SC, Levine BL, Carroll RG, June CH: TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin Cancer Res 2003, 9:1517-1527.
- [38]Edwards RP, Gooding W, Lembersky BC, Colonello K, Hammond R, Paradise C, Kowal CD, Kunschner AJ, Baldisseri M, Kirkwood JM, Herberman RB: Comparison of toxicity and survival following intraperitoneal recombinant interleukin-2 for persistent ovarian cancer after platinum: twenty-four-hour versus 7-day infusion. J Clin Oncol 1997, 15:3399-3407.
- [39]Vlad AM, Budiu RA, Lenzner DE, Wang Y, Thaller JA, Colonello K, Crowley Nowick PA, Kelley JL, Price FV, Edwards RP: A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol Immunother 2010, 59(2):293-301.
- [40]Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, Macrae S, Nelson M, Canning C, Lowy I, Korman A, Lautz D, Russell S, Jaklitsch MT, Ramaiya N, Chen TC, Neuberg D, Allison JP, Mihm MC, Dranoff G: Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA 2008, 105:3005-3010.
- [41]Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A, Padera R, Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff G: Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003, 100:4712-4717.
- [42]Odunsi K, Qian F, Matsuzaki J, Mhawech-Fauceglia P, Andrews C, Hoffman EW, Pan L, Ritter G, Villella J, Thomas B, Rodabaugh K, Lele S, Shrikant P, Old LJ, Gnjatic S: Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci USA 2007, 104:12837-12842.
- [43]Mobus V, Horn S, Stock M, Schirrmacher V: Tumor cell vaccination for gynecological tumors. Hybridoma 1993, 12:543-547.
- [44]Hernando JJ, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T: Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother 2002, 51:45-52.
- [45]Chu CS, Kim SH, June CH, Coukos G: Immunotherapy opportunities in ovarian cancer. Expert Rev Anticancer Ther 2008, 8:243-257.
- [46]Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief K, Nijman HW: Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 2009, 4(1):CD007287.
- [47]Chianese-Bullock KA, Irvin WP Jr, Petroni GR, Murphy C, Smolkin M, Olson WC, Coleman E, Boerner SA, Nail CJ, Neese PY, Yuan A, Hogan KT, Slingluff CL Jr: A multipeptide vaccine is safe and elicits T-cell responses in participants with advanced stage ovarian cancer. J Immunother 2008, 31:420-430.
- [48]Tsuda N, Mochizuki K, Harada M, Sukehiro A, Kawano K, Yamada A, Ushijima K, Sugiyama T, Nishida T, Yamana H, Itoh K, Kamura T: Vaccination with predesignated or evidence-based peptides for patients with recurrent gynecologic cancers. J Immunother 2004, 27(1997):60-72.
- [49]Chu CS, Boyer J, Schullery DS, Gimotty PA, Gamerman V, Bender J, Levine BL, Coukos G, Rubin SC, Morgan MA, Vonderheide RH, June CH: Cancer Immunol Immunother. 2012, 61(5):629-41. Epub 2011 Oct 22
- [50]Chiang CL, Benencia F, Coukos G: Whole tumor antigen vaccines. Semin Immunol 2010, 22:132-143.
- [51]Toes RE, Schoenberger SP, van der Voort EI, Offringa R, Melief CJ: CD40-CD40Ligand interactions and their role in cytotoxic T lymphocyte priming and anti-tumor immunity. Semin Immunol 1998, 10:443-448.
- [52]Zajac AJ, Murali-Krishna K, Blattman JN, Ahmed R: Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Curr Opin Immunol 1998, 10:444-449.
- [53]Wong SB, Bos R, Sherman LA: Tumor-specific CD4+ T cells render the tumor environment permissive for infiltration by low-avidity CD8+ T cells. J Immunol 2008, 180:3122-3131.
- [54]Cancer Genome Atlas Research N: Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474:609-615.
- [55]Neller MA, Lopez JA, Schmidt CW: Antigens for cancer immunotherapy. Semin Immunol 2008, 20:286-295.
- [56]Dikov MM, Oyama T, Cheng P, Takahashi T, Takahashi K, Sepetavec T, Edwards B, Adachi Y, Nadaf S, Daniel T, Gabrilovich DI, Carbone DP: Vascular endothelial growth factor effects on nuclear factor-kappaB activation in hematopoietic progenitor cells. Cancer Res 2001, 61:2015-2021.
- [57]Rabinowich H, Reichert TE, Kashii Y, Gastman BR, Bell MC, Whiteside TL: Lymphocyte apoptosis induced by Fas ligand- expressing ovarian carcinoma cells. Implications for altered expression of T cell receptor in tumor-associated lymphocytes. J Clin Invest 1998, 101:2579-2588.
- [58]Groh V, Wu J, Yee C, Spies T: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002, 419:734-738.
- [59]Prokopowicz ZM, Arce F, Biedron R, Chiang CL, Ciszek M, Katz DR, Nowakowska M, Zapotoczny S, Marcinkiewicz J, Chain BM: Hypochlorous acid: a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity. J Immunol 2010, 184:824-835.
- [60]Deacon DH, Hogan KT, Swanson EM, Chianese-Bullock KA, Denlinger CE, Czarkowski AR, Schrecengost RS, Patterson JW, Teague MW, Slingluff CL Jr: The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines. BMC Cancer 2008, 8:360. BioMed Central Full Text
- [61]Coukos G, Courreges MC, Benencia F: Intraperitoneal oncolytic and tumor vaccination therapy with replication-competent recombinant virus: the herpes paradigm. Curr Gene Ther 2003, 3:113-125.
- [62]Chiang CL, Maier DA, Kandalaft LE, Brennan AL, Lanitis E, Ye Q, Levine BL, Czerniecki BJ, Powell DJ Jr, Coukos G: Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate. J Transl Med 2011, 9:198. BioMed Central Full Text
- [63]Callahan MK, Chaillot D, Jacquin C, Clark PR, Menoret A: Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions. J Biol Chem 2002, 277:33604-33609.
- [64]Stark JM: Immunological adjuvance of metabolic origin: oxidative stress, postulated impaired function of thiol proteases and immunogenicity. Scand J Immunol 1998, 48:475-479.
- [65]Reth M: Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 2002, 3:1129-1134.
- [66]Tatla S, Woodhead V, Foreman JC, Chain BM: The role of reactive oxygen species in triggering proliferation and IL-2 secretion in T cells. Free Radic Biol Med 1999, 26:14-24.
- [67]Chiang CL, Ledermann JA, Aitkens E, Benjamin E, Katz DR, Chain BM: Oxidation of ovarian epithelial cancer cells by hypochlorous acid enhances immunogenicity and stimulates T cells that recognize autologous primary tumor. Clin Cancer Res 2008, 14:4898-4907.
- [68]Chiang CL, Ledermann JA, Rad AN, Katz DR, Chain BM: Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol Immunother 2006, 55:1384-1395.
- [69]Anderson MM, Hazen SL, Hsu FF, Heinecke JW: Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation. J Clin Invest 1997, 99:424-432.
- [70]Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW: The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest 1999, 104:103-113.
- [71]Hazen SL, Hsu FF, Mueller DM, Crowley JR, Heinecke JW: Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J Clin Invest 1996, 98:1283-1289.
- [72]Carrasco-Marin E, Paz-Miguel JE, Lopez-Mato P, Alvarez-Dominguez C, Leyva-Cobian F: Oxidation of defined antigens allows protein unfolding and increases both proteolytic processing and exposes peptide epitopes which are recognized by specific T cells. Immunology 1998, 95:314-321.
- [73]Chen M, Masaki T, Sawamura T: LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002, 95:89-100.
- [74]Moriwaki H, Kume N, Sawamura T, Aoyama T, Hoshikawa H, Ochi H, Nishi E, Masaki T, Kita T: Ligand specificity of LOX-1, a novel endothelial receptor for oxidized low density lipoprotein. Arterioscler Thromb Vasc Biol 1998, 18:1541-1547.
- [75]Oka K, Sawamura T, Kikuta K, Itokawa S, Kume N, Kita T, Masaki T: Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA 1998, 95:9535-9540.
- [76]Xie J, Zhu H, Guo L, Ruan Y, Wang L, Sun L, Zhou L, Wu W, Yun X, Shen A, Gu J: Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J Immunol 2010, 185:2306-2313.
- [77]Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998, 4:328-332.
- [78]Maier T, Tun-Kyi A, Tassis A, Jungius KP, Burg G, Dummer R, Nestle FO: Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 2003, 102:2338-2344.
- [79]Gitlitz BJ, Belldegrun AS, Zisman A, Chao DH, Pantuck AJ, Hinkel A, Mulders P, Moldawer N, Tso CL, Figlin RA: A pilot trial of tumor lysate-loaded dendritic cells for the treatment of metastatic renal cell carcinoma. J Immunother 2003, 26:412-419.
- [80]Iwashita Y, Tahara K, Goto S, Sasaki A, Kai S, Seike M, Chen CL, Kawano K, Kitano S: A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol Immunother 2003, 52:155-161.
- [81]Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G: Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 1999, 223:1-15.
- [82]Berger TG, Strasser E, Smith R, Carste C, Schuler-Thurner B, Kaempgen E, Schuler G: Efficient elutriation of monocytes within a closed system (Elutra) for clinical-scale generation of dendritic cells. J Immunol Methods 2005, 298:61-72.
- [83]Berger TG, Feuerstein B, Strasser E, Hirsch U, Schreiner D, Schuler G, Schuler-Thurner B: Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J Immunol Methods 2002, 268:131-140.
- [84]Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, Oh S, Fay J, Pascual V, Banchereau J, Palucka K: Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010, 234:199-212.
- [85]Ardavin C, Amigorena S, Reis E, Sousa C: Dendritic cells: immunobiology and cancer immunotherapy. Immunity 2004, 20:17-23.
- [86]Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 2000, 18:767-811.
- [87]Chiang CL, Hagemann AR, Leskowitz R, Mick R, Garrabrant T, Czerniecki BJ, Kandalaft LE, Powell DJ, Coukos G: Day-4 myeloid dendritic cells pulsed with whole tumor lysate are highly immunogenic and elicit potent anti-tumor responses. PLoS One 2011, 6:e28732.
- [88]Yang L, Carbone DP: Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 2004, 92:13-27.
- [89]Ohm JE, Carbone DP: VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 2001, 23:263-272.
- [90]Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998, 92:4150-4166.
- [91]Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996, 2:1096-1103.
- [92]Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 1998, 160:1224-1232.
- [93]Ishida T, Oyama T, Carbone DP, Gabrilovich DI: Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol 1998, 161:4842-4851.
- [94]Takahashi A, Kono K, Ichihara F, Sugai H, Fujii H, Matsumoto Y: Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 2004, 53:543-550.
- [95]Ohm JE, Shurin MR, Esche C, Lotze MT, Carbone DP, Gabrilovich DI: Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol 1999, 163:3260-3268.
- [96]Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP: Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 2005, 174:215-222.
- [97]Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, Gordon A, Dhurandhar N, Myers L, Berggren R, Hemminki A, Alvarez RD, Emilie D, Curiel DT, Chen L, Zou W: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003, 9:562-567.
- [98]Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI: Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000, 6:1755-1766.
- [99]Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP: Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 1999, 5:2963-2970.
- [100]Miyazaki A, Nakanishi T, Shimizu A, Mizobuchi M, Yamada Y, Imai K: Hb KOCHI [beta141(H19)Leu-->Val (g.1404-->C G); 144-->146(HC1-3)Lys-Tyr-His-->0 (g.1413 A-->T)]: a new variant with increased oxygen affinity. Hemoglobin 2005, 29:1-10.
- [101]Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E: Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 2003, 102:964-971.
- [102]Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan Tu G, Prell R, VanRoey MJ, Simmons AD, Jooss K: Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 2006, 12:6808-6816.
- [103]Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006, 24:99-146.
- [104]Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ: Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer 2006, 107:67-74.
- [105]Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, Katsaros D, O’Brien-Jenkins A, Gimotty PA, Coukos G: Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 2008, 14:28-36.
- [106]Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G: Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res 2009, 15:4521-4528.
- [107]Rosano L, Spinella F, Salani D, Di Castro V, Venuti A, Nicotra MR, Natali PG, Bagnato A: Therapeutic targeting of the endothelin a receptor in human ovarian carcinoma. Cancer Res 2003, 63:2447-2453.
- [108]Spinella F, Rosano L, Elia G, Di Castro V, Natali PG, Bagnato A: Endothelin-1 Stimulates Cyclooxygenase-2 Expression in Ovarian Cancer Cells Through Multiple Signaling Pathways: Evidence for Involvement of Transactivation of the Epidermal Growth Factor Receptor. J Cardiovasc Pharmacol 2004, 44:S140-S143.
- [109]Spinella F, Rosano L, Di Castro V, Decandia S, Nicotra MR, Natali PG, Bagnato A: Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells. Cancer Res 2007, 67:1725-1734.
- [110]Rosano L, Spinella F, Di Castro V, Nicotra MR, Albini A, Natali PG, Bagnato A: Endothelin receptor blockade inhibits molecular effectors of Kaposi’s sarcoma cell invasion and tumor growth in vivo. Am J Pathol 2003, 163:753-762.
- [111]Spinella F, Rosano L, Di Castro V, Natali PG, Bagnato A: Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1alpha in ovarian carcinoma cells. J Biol Chem 2002, 277:27850-27855.
- [112]Salani D, Taraboletti G, Rosano L, Di Castro V, Borsotti P, Giavazzi R, Bagnato A: Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am J Pathol 2000, 157:1703-1711.
- [113]Zhang L, Yang N, Conejo-Garcia J-R, Mohamed A, Benencia F, Rubin SC, Allman D, Coukos G: Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol 2002, 161:2295-2309.
- [114]Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD, Hicklin DJ, Jaffee EM, Emens LA: A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res 2007, 13:3951-3959.
- [115]Mendel DB, Laird AD, Smolich BD, Blake RA, Liang C, Hannah AL, Shaheen RM, Ellis LM, Weitman S, Shawver LK, Cherrington JM: Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 2000, 15:29-41.
- [116]Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA: Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010, 70:6171-6180.
- [117]Berd D, Mastrangelo MJ: Active immunotherapy of human melanoma exploiting the immunopotentiating effects of cyclophosphamide. Cancer Invest 1988, 6:337-349.
- [118]North RJ: Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 1982, 155:1063-1074.
- [119]Awwad M, North RJ: Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res 1989, 49:1649-1654.
- [120]Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM: Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 2001, 61:3689-3697.
- [121]Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM: Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 2005, 201:1591-1602.
- [122]Leao IC, Ganesan P, Armstrong TD, Jaffee EM: Effective depletion of regulatory T cells allows the recruitment of mesothelin-specific CD8 T cells to the antitumor immune response against a mesothelin-expressing mouse pancreatic adenocarcinoma. Clin Transl Sci 2008, 1:228-239.
- [123]Curtis RE, Travis LB, Rowlings PA, Socie G, Kingma DW, Banks PM, Jaffe ES, Sale GE, Horowitz MM, Witherspoon RP, Shriner DA, Weisdorf DJ, Kolb HJ, Sullivan KM, Sobocinski KA, Gale RP, Hoover RN, Fraumeni JF Jr, Deeg HJ: Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 1999, 94:2208-2216.
- [124]Berd D, Maguire HC Jr, Mastrangelo MJ: Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res 1986, 46:2572-2577.
- [125]Emens LA, Asquith JM, Leatherman JM, Kobrin BJ, Petrik S, Laiko M, Levi J, Daphtary MM, Biedrzycki B, Wolff AC, Stearns V, Disis ML, Ye X, Piantadosi S, Fetting JH, Davidson NE, Jaffee EM: Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 2009, 27:5911-5918.
- [126]Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, Tartakovsky I, Nemunaitis J, Le D, Sugar E: Allogeneic granulocyte macrophage colony-stimulating factor–secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 2008, 14:1455.
- [127]Hahnfeldt P, Folkman J, Hlatky L: Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J Theor Biol 2003, 220:545-554.
- [128]Garcia A, Oza A, Hirte H: Interim report of a phase II clinical trial of bevacizumab (Bev) and low dose metronomic oral cyclophophamide (mCTX) in recurrent ovarian (OC) and primary peritoneal carcinoma: a California Cancer Consortium Trial. J Clin Oncol 2005, 23(suppl):5000.
- [129]Chura J, Van Iseghem K, Downs L Jr, Carson LF, Judson P: Bevacizumab plus cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Gynecol Oncol 2007, 107:326-330.
- [130]Xu S, Koski GK, Faries M, Bedrosian I, Mick R, Maeurer M, Cheever MA, Cohen PA, Czerniecki BJ: Rapid high efficiency sensitization of CD8+ T cells to tumor antigens by dendritic cells leads to enhanced functional avidity and direct tumor recognition through an IL-12-dependent mechanism. J Immunol 2003, 171:2251-2261.
- [131]Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn LL, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 2012, 109:17561-17566.
- [132]Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011, 475:226-230.
- [133]Marcinkiewicz J, Chain BM, Olszowska E, Olszowski S, Zgliczynski JM: Enhancement of immunogenic properties of ovalbumin as a result of its chlorination. Int J Biochem 1991, 23:1393-1395.
- [134]Marcinkiewicz J, Olszowska E, Olszowski S, Zgliczynski JM: Enhancement of trinitrophenyl-specific humoral response to TNP proteins as the result of carrier chlorination. Immunology 1992, 76:385-388.
- [135]Engels FH, Koski GK, Bedrosian I, Xu S, Luger S, Nowell PC, Cohen PA, Czerniecki BJ: Calcium signaling induces acquisition of dendritic cell characteristics in chronic myelogenous leukemia myeloid progenitor cells. Proc Natl Acad Sci U S A 1999, 96:10332-10337.
- [136]Czerniecki BJ, Cohen PA, Faries M, Xu S, Roros JG, Bedrosian I: Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. Crit Rev Immunol 2001, 21:157-178.
- [137]Koski GK, Cohen PA, Roses RE, Xu S, Czerniecki BJ: Reengineering dendritic cell-based anti-cancer vaccines. Immunol Rev 2008, 222:256-276.
- [138]Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Thurin M, Trinchieri G, Wang E, Wigginton J, Chaussabel D, Coukos G, Dhodapkar M, Hakansson L, Janetzki S, Kleen TO, Kirkwood JM, Maccalli C, Maecker H, Maio M, Malyguine A, Masucci G, Palucka AK, Potter DM, Ribas A, Rivoltini L, Schendel D, Seliger B, Selvan S, Slingluff CL Jr, Stroncek DF, Streicher H, Wu X, Zeskind B, Zhao Y, Zocca MB, Zwierzina H, Marincola FM: A systematic approach to biomarker discovery; preamble to “the iSBTc-FDA taskforce on immunotherapy biomarkers”. J Transl Med 2008, 6:81. BioMed Central Full Text
- [139]DeBenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG: Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother 2011, 34:45-57.
- [140]Watchmaker PB, Berk E, Muthuswamy R, Mailliard RB, Urban JA, Kirkwood JM, Kalinski P: Independent regulation of chemokine responsiveness and cytolytic function versus CD8+ T cell expansion by dendritic cells. J Immunol 2010, 184:591-597.
- [141]Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, Zeh H, Holtzman MP, Reinhart TA, Whiteside TL, Butterfield LH, Hamilton RL, Potter DM, Pollack IF, Salazar AM, Lieberman FS: Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011, 29:330-336.
- [142]Lambert LA, Gibson GR, Maloney M, Durell B, Noelle RJ, Barth RJ Jr: Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity. Cancer Res 2001, 61:641-646.
- [143]Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M, Zhang P, Cohen PA, Koski G, Czerniecki BJ: Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 2003, 21:3826-3835.
- [144]Yamamoto S, Konishi I, Mandai M, Kuroda H, Komatsu T, Nanbu K, Sakahara H, Mori T: Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer 1997, 76:1221-1227.
- [145]Hartenbach EM, Olson TA, Goswitz JJ, Mohanraj D, Twiggs LB, Carson LF, Ramakrishnan S: Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett 1997, 121:169-175.
- [146]Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, Sovak MA, Yi J, Nycum LR: OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol 2012, 30:2039-2045.
- [147]Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, du Bois A, Sehouli J, Kimmig R, Stahle A, Collinson F, Essapen S, Gourley C, Lortholary A, Selle F, Mirza MR, Leminen A, Plante M, Stark D, Qian W, Parmar MK, Oza AM, Investigators I: A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 2011, 365:2484-2496.
- [148]Muller WA: Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 2011, 6:323-344.
- [149]Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O: Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol 2007, 178:1505-1511.
- [150]Griffioen AW, Damen CA, Blijham GH, Groenewegen G: Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 1996, 88:667-673.
- [151]Mazanet MM, Hughes CC: B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J Immunol 2002, 169:3581-3588.
- [152]Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T, Greenfield EA, Liang SC, Sharpe AH, Lichtman AH, Freeman GJ: Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol 2003, 33:3117-3126.
- [153]Sata M, Walsh K: TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med 1998, 4:415-420.
- [154]Secchiero P, Zauli G: The puzzling role of TRAIL in endothelial cell biology. Arterioscler Thromb Vasc Biol 2008, 28:e4. author reply e5-6
- [155]Ma L, Mauro C, Cornish GH, Chai JG, Coe D, Fu H, Patton D, Okkenhaug K, Franzoso G, Dyson J, Nourshargh S, Marelli-Berg FM: Ig gene-like molecule CD31 plays a nonredundant role in the regulation of T-cell immunity and tolerance. Proc Natl Acad Sci USA 2010, 107:19461-19466.
- [156]Sasaroli D, Gimotty PA, Pathak HB, Hammond R, Kougioumtzidou E, Katsaros D, Buckanovich R, Devarajan K, Sandaltzopoulos R, Godwin AK, Scholler N, Coukos G: Novel surface targets and serum biomarkers from the ovarian cancer vasculature. Cancer Biol Ther 2011, 12:169-180.
- [157]Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH: Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001, 61:4766-4772.
- [158]Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004, 10:942-949.
- [159]Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B: Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007, 56:641-648.
- [160]Le DT, Jaffee EM: Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res 2012, 72:3439-3444.
- [161]Motz GT, Coukos G: The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 2011, 11:702-11.