期刊论文详细信息
Cardiovascular Diabetology
Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes
Tianqing Peng5  Peter W Schiller1  Wang Wang2  Gediminas Cepinskas6  Inga Cepinskas6  Limei Shan4  Futian Tang4  Rui Ni7  Qing Zhao3  Bainian Chen4 
[1] Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada;Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA;Department of Cardiology, Shanghai 6th People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China;Department of Medicine, University of Western Ontario, London N6A 4G5, Ontario, Canada;Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, Ontario, Canada;Lawson Health Research Institute, London Health Sciences Centre, London N6A 4G5, Ontario, Canada;Department of Pathology, University of Western Ontario, London N6A 4G5, Ontario, Canada
关键词: Endothelial dysfunction;    ROS;    eNOS;    Calpain;    Diabetes;   
Others  :  793025
DOI  :  10.1186/1475-2840-13-88
 received in 2014-01-20, accepted in 2014-04-25,  发布年份 2014
PDF
【 摘 要 】

Aims

The present study was to investigate the role of calpain in reactive oxygen species (ROS) production in endothelial cells and endothelium-dependent vascular dysfunction under experimental conditions of diabetes.

Methods and results

Exposure to high glucose activated calpain, induced apoptosis and reduced nitric oxide (NO) production without changing eNOS protein expression, its phosphorylation and dimers formation in primary human umbilical vein endothelial cells (HUVECs). These effects of high glucose correlated with intracellular ROS production and mitochondrial superoxide generation. Selectively scavenging mitochondrial superoxide increased NO production in high glucose-stimulated HUVECs. Inhibition of calpain using over-expression of calpastatin or pharmacological calpain inhibitor prevented high glucose-induced ROS production, mitochondrial superoxide generation and apoptosis, which were concurrent with an elevation of NO production in HUVECs. In mouse models of streptozotocin-induced type-1 diabetes and OVE26 type-1 diabetic mice, calpain activation correlated with an increase in ROS production and peroxynitrite formation in aortas. Transgenic over-expression of calpastatin reduced ROS production and peroxynitrite formation in diabetic mice. In parallel, diabetes-induced reduction of endothelium-dependent relaxation in aortic ring was reversed by over-expression of calpastatin in mouse models of diabetes. However, the protective effect of calpastatin on endothelium-dependent relaxation was abrogated by eNOS deletion in diabetic mice.

Conclusions

This study suggests that calpain may play a role in vascular endothelial cell ROS production and endothelium-dependent dysfunction in diabetes. Thus, calpain may be an important therapeutic target to overcome diabetes-induced vascular dysfunction.

【 授权许可】

   
2014 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705042521399.pdf 2169KB PDF download
Figure 6. 78KB Image download
Figure 5. 79KB Image download
Figure 4. 96KB Image download
Figure 3. 54KB Image download
Figure 2. 55KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Creager MA, Luscher TF, Cosentino F, Beckman JA: Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003, 108(12):1527-1532.
  • [2]Xu J, Zou MH: Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation 2009, 120(13):1266-1286.
  • [3]Triggle CR, Ding H: A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS. J Am Soc Hypertens 2010, 4(3):102-115.
  • [4]Shemyakin A, Kovamees O, Rafnsson A, Bohm F, Svenarud P, Settergren M, Jung C, Pernow J: Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation 2012, 126(25):2943-2950.
  • [5]Burlet E, Jain SK: Manganese supplementation reduces high glucose-induced monocyte adhesion to endothelial cells and endothelial dysfunction in Zucker diabetic fatty rats. J Biol Chem 2013, 288(9):6409-6416.
  • [6]Pennathur S, Heinecke JW: Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 2007, 7(4):257-264.
  • [7]Quijano C, Castro L, Peluffo G, Valez V, Radi R: Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite. Am J Physiol Heart Circ Physiol 2007, 293(6):H3404-3414.
  • [8]Cifarelli V, Geng X, Styche A, Lakomy R, Trucco M, Luppi P: C-peptide reduces high-glucose-induced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation in human aortic endothelial cells. Diabetologia 2011, 54(10):2702-2712.
  • [9]Lau YS, Tian XY, Huang Y, Murugan D, Achike FI, Mustafa MR: Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem Pharmacol 2013, 85(3):367-375.
  • [10]Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM: Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002, 105(14):1656-1662.
  • [11]Leo CH, Hart JL, Woodman OL: 3',4'-Dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries. PLoS One 2011, 6(6):e20813.
  • [12]Fatehi-Hassanabad Z, Chan CB, Furman BL: Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 2010, 636(1–3):8-17.
  • [13]Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, Vergely C: Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther 2013, 140(3):239-257.
  • [14]Sun J, Pu Y, Wang P, Chen S, Zhao Y, Liu C, Shang Q, Zhu Z, Liu D: TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction. Cardiovasc Diabetol 2013, 12:69. BioMed Central Full Text
  • [15]Giacco F, Brownlee M: Oxidative stress and diabetic complications. Circ Res 2010, 107(9):1058-1070.
  • [16]Dikalov S: Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 2011, 51(7):1289-1301.
  • [17]Bravard A, Bonnard C, Durand A, Chauvin MA, Favier R, Vidal H, Rieusset J: Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. Am J Physiol Endocrinol Metab 2011, 300(3):E581-591.
  • [18]Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414(6865):813-820.
  • [19]Johansen JS, Harris AK, Rychly DJ, Ergul A: Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 2005, 4(1):5. BioMed Central Full Text
  • [20]Ho FM, Lin WW, Chen BC, Chao CM, Yang CR, Lin LY, Lai CC, Liu SH, Liau CS: High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal 2006, 18(3):391-399.
  • [21]Goll DE, Thompson VF, Li H, Wei W, Cong J: The calpain system. Physiol Rev 2003, 83(3):731-801.
  • [22]Letavernier E, Perez J, Bellocq A, Mesnard L, de Castro KA, Haymann JP, Baud L: Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ Res 2008, 102(6):720-728.
  • [23]Wang S, Peng Q, Zhang J, Liu L: Na+/H + exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain. Cardiovasc Res 2008, 80(2):255-262.
  • [24]Stalker TJ, Gong Y, Scalia R: The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes. Diabetes 2005, 54(4):1132-1140.
  • [25]Stalker TJ, Skvarka CB, Scalia R: A novel role for calpains in the endothelial dysfunction of hyperglycemia. FASEB J 2003, 17(11):1511-1513.
  • [26]Scalia R, Gong Y, Berzins B, Zhao LJ, Sharma K: Hyperglycemia is a major determinant of albumin permeability in diabetic microcirculation: the role of mu-calpain. Diabetes 2007, 56(7):1842-1849.
  • [27]Peltier J, Bellocq A, Perez J, Doublier S, Dubois YC, Haymann JP, Camussi G, Baud L: Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice. J Am Soc Nephrol 2006, 17(12):3415-3423.
  • [28]Li Y, Ma J, Zhu H, Singh M, Hill D, Greer PA, Arnold JM, Abel ED, Peng T: Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes 2011, 60(11):2985-2994.
  • [29]Cepinskas G, Sandig M, Kvietys PR: PAF-induced elastase-dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front. J Cell Sci 1999, 112(Pt 12):1937-1945.
  • [30]Ma J, Wang Y, Zheng D, Wei M, Xu H, Peng T: Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res 2013, 97(1):77-87.
  • [31]Zhu H, Yang Y, Wang Y, Li J, Schiller PW, Peng T: MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc Res 2011, 92(1):75-84.
  • [32]Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H: Superoxide flashes in single mitochondria. Cell 2008, 134(2):279-290.
  • [33]Wang Y, Zheng D, Wei M, Ma J, Yu Y, Chen R, Lacefield JC, Xu H, Peng T: Over-expression of calpastatin aggravates cardiotoxicity induced by doxorubicin. Cardiovasc Res 2013, 98(3):381-390.
  • [34]Vattemi G, Mechref Y, Marini M, Tonin P, Minuz P, Grigoli L, Guglielmi V, Klouckova I, Chiamulera C, Meneguzzi A, Di Chio M, Tedesco V, Lovato L, Degan M, Arcaro G, Lechi A, Novotny MV, Tomelleri G: Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement. Mol Cell Proteomics 2011, 10(4):M110 002964.
  • [35]Schuh K, Quaschning T, Knauer S, Hu K, Kocak S, Roethlein N, Neyses L: Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J Biol Chem 2003, 278(42):41246-41252.
  • [36]Ansari HR, Nadeem A, Talukder MA, Sakhalkar S, Mustafa SJ: Evidence for the involvement of nitric oxide in A2B receptor-mediated vasorelaxation of mouse aorta. Am J Physiol Heart Circ Physiol 2007, 292(1):H719-725.
  • [37]Balaban RS, Nemoto S, Finkel T: Mitochondria, oxidants, and aging. Cell 2005, 120(4):483-495.
  • [38]Ohara T, Sussman KE, Draznin B: Effect of diabetes on cytosolic free Ca2+ and Na(+)-K(+)-ATPase in rat aorta. Diabetes 1991, 40(11):1560-1563.
  • [39]Williams SP, Dorn GW 2nd, Rapoport RM: Prostaglandin I2 mediates contraction and relaxation of vascular smooth muscle. Am J Physiol 1994, 267(2 Pt 2):H796-803.
  • [40]Jones RL, Chan K: Distinction between relaxations induced via prostanoid EP(4) and IP(1) receptors in pig and rabbit blood vessels. Br J Pharmacol 2001, 134(2):313-324.
  • [41]Brandes RP, Schmitz-Winnenthal FH, Feletou M, Godecke A, Huang PL, Vanhoutte PM, Fleming I, Busse R: An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. Proc Natl Acad Sci U S A 2000, 97(17):9747-9752.
  • [42]Wigg SJ, Tare M, Tonta MA, O'Brien RC, Meredith IT, Parkington HC: Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery. Am J Physiol Heart Circ Physiol 2001, 281(1):H232-240.
  • [43]Youn JY, Wang T, Cai H: An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production. Circ Res 2009, 104(1):50-59.
  • [44]Tian XY, Wong WT, Xu A, Lu Y, Zhang Y, Wang L, Cheang WS, Wang Y, Yao X, Huang Y: Uncoupling protein-2 protects endothelial function in diet-induced obese mice. Circ Res 2012, 110(9):1211-1216.
  • [45]Moshal KS, Singh M, Sen U, Rosenberger DS, Henderson B, Tyagi N, Zhang H, Tyagi SC: Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 2006, 291(6):H2825-2835.
  • [46]Brule C, Dargelos E, Diallo R, Listrat A, Bechet D, Cottin P, Poussard S: Proteomic study of calpain interacting proteins during skeletal muscle aging. Biochimie 2010, 92(12):1923-1933.
  • [47]Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS: The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 2011, 286(6):4772-4782.
  • [48]Ozaki T, Yamashita T, Ishiguro S: Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim Biophys Acta 2009, 1793(12):1848-1859.
  • [49]Shen E, Li Y, Shan L, Zhu H, Feng Q, Arnold JM, Peng T: Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 2009, 58(10):2386-2395.
  • [50]Gabunia K, Ellison SP, Singh H, Datta P, Kelemen SE, Rizzo V, Autieri MV: Interleukin-19 (IL-19) induces heme oxygenase-1 (HO-1) expression and decreases reactive oxygen species in human vascular smooth muscle cells. J Biol Chem 2012, 287(4):2477-2484.
  • [51]Bryk D, Zapolska-Downar D, Malecki M, Hajdukiewicz K, Sitkiewicz D: Trans fatty acids induce a proinflammatory response in endothelial cells through ROS-dependent nuclear factor-kappaB activation. J Physiol Pharmacol 2011, 62(2):229-238.
  • [52]Aljofan M, Ding H: High glucose increases expression of cyclooxygenase-2, increases oxidative stress and decreases the generation of nitric oxide in mouse microvessel endothelial cells. J Cell Physiol 2010, 222(3):669-675.
  • [53]Weidig P, McMaster D, Bayraktutan U: High glucose mediates pro-oxidant and antioxidant enzyme activities in coronary endothelial cells. Diab Obes Metab 2004, 6(6):432-441.
  • [54]Salt IP, Morrow VA, Brandie FM, Connell JM, Petrie JR: High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells. J Biol Chem 2003, 278(21):18791-18797.
  • [55]Averna M, Stifanese R, De Tullio R, Salamino F, Bertuccio M, Pontremoli S, Melloni E: Proteolytic degradation of nitric oxide synthase isoforms by calpain is modulated by the expression levels of HSP90. FEBS J 2007, 274(23):6116-6127.
  • [56]Dong Y, Wu Y, Wu M, Wang S, Zhang J, Xie Z, Xu J, Song P, Wilson K, Zhao Z, Lyons T, Zou MH: Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase. J Cell Mol Med 2009, 13(9A):2899-2910.
  • [57]Vindis C, Elbaz M, Escargueil-Blanc I, Auge N, Heniquez A, Thiers JC, Negre-Salvayre A, Salvayre R: Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis. Arterioscler Thromb Vasc Biol 2005, 25(3):639-645.
  文献评价指标  
  下载次数:42次 浏览次数:3次