期刊论文详细信息
Journal for ImmunoTherapy of Cancer
Highlights of the society for immunotherapy of cancer (SITC) 27th annual meeting
Antoni Ribas1,18  Laurence Zitvogel1,15  Cassian Yee1,19  Aladar A Szalay6  Howard Streicher7  Raj K Puri2  Steven A Rosenberg1  Nicholas P Restifo1  Daniel J Powell1,12  David H Munn8  William Merritt7  Francesco Marincola9  Samir N Khleif8  Michael H Kershaw1,13  Howard L Kaufman3  Pawel Kalinski1,10  Philip D Greenberg1,16  Thomas F Gajewski4  Begonya Comin-Anduix1,18  Sara Civini1,11  Martin A Cheever5  Alessandra Cesano1,17  Luciano Castiello1,11  Cornelis JM Melief1,14  David F Stroncek1,11 
[1] Surgery Branch, National Cancer Institute, NIH, Bethesda, MD, USA;US Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, MD, USA;Rush University Cancer Center, Rush University Medical Center, Chicago, IL, USA;Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA;Fred Hutchinson Cancer Research Center and Cancer Immunotherapy Trials Network (CITN), Seattle, WA, USA;Genelux Corporation, San Diego, CA, USA;National Cancer Institute, Bethesda, MA, USA;Georgia Health Sciences University, Augusta, GA, USA;Sidra Medical and Research, Centre, Doha, Qatar;Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA;Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA;University of Pennsylvania, Philadelphia, PA, USA;Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Australia;Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands;Institute Gustave Roussy, Villejuif, France;Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA;Nodality, Inc, South San Francisco, CA, USA;Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA;MD Anderson Cancer Center, Houston, TX, USA
关键词: Adoptive cellular therapy;    Cancer;    Immunotherapy;   
Others  :  815076
DOI  :  10.1186/2051-1426-1-4
 received in 2013-04-17, accepted in 2013-05-14,  发布年份 2013
PDF
【 摘 要 】

The 27th annual meeting of the Society for Immunotherapy of Cancer (SITC) was held on October 26–28, 2012 in North Bethesda, Maryland and the highlights of the meeting are summarized. The topics covered at this meeting included advances in cancer treatment using adoptive cell therapy (ACT), oncolytic viruses, dendritic cells (DCs), immune check point modulators and combination therapies. Advances in immune editing of cancer, immune modulation by cancer and the tumor microenvironment were also discussed as were advances in single cell analysis and the manufacture and potency testing of tumor infiltrating lymphocytes (TIL).

【 授权许可】

   
2013 Stroncek et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710053943334.pdf 246KB PDF download
【 参考文献 】
  • [1]Schreiber RD, Old LJ, Smyth MJ: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331:1565-1570.
  • [2]Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL: Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 2010, 5:e11469.
  • [3]Johnson TS, Munn DH: Host indoleamine 2,3-dioxygenase: contribution to systemic acquired tumor tolerance. Immunol Invest 2012, 41:765-797.
  • [4]Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al.: Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 2004, 114:280-290.
  • [5]Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, et al.: PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 2004, 64:1140-1145.
  • [6]Westwood JA, Darcy PK, Guru PM, Sharkey J, Pegram HJ, Amos SM, et al.: Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice. J Transl Med 2010, 8:42.
  • [7]Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, et al.: 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2012, 2:765.
  • [8]Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, et al.: IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 2004, 101:1969-1974.
  • [9]Bergamaschi C, Bear J, Rosati M, Beach RK, Alicea C, Sowder R, et al.: Circulating IL-15 exists as heterodimeric complex with soluble IL-15Ralpha in human and mouse serum. Blood 2012, 120:e1-e8.
  • [10]Stroncek DF, Berger C, Cheever MA, Childs RW, Dudley ME, Flynn P, et al.: New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer. J Transl Med 2012, 10:48.
  • [11]Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al.: Durable complete responses in heavily pretreted patients with metastatic melanoma using T cell transfer immunotherapy. Clin Cancer Res 2011, 17:4550-4557.
  • [12]Chapuis AG, Thompson JA, Margolin KA, Rodmyre R, Lai IP, Dowdy K, et al.: Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc Natl Acad Sci U S A 2012, 109:4592-4597.
  • [13]Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al.: CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010, 16:6122-6131.
  • [14]Jin J, Sabatino M, Somerville R, Wilson JR, Dudley ME, Stroncek DF, et al.: Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J Immunother 2012, 35:283-292.
  • [15]Ye Q, Loisiou M, Levine BL, Suhoski MM, Riley JL, June CH, et al.: Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med 2011, 9:131.
  • [16]Wang A, Chandran S, Shah SA, Chiu Y, Paria BC, Aghamolla T, et al.: The stoichiometric production of IL-2 and IFN-gamma mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci Transl Med 2012, 4:149ra120.
  • [17]Radvanyi LG, Bernatchez C, Zhang M, Fox P, Miller P, Chacon J, et al.: Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 2012, 18:6758-6770.
  • [18]Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME, Liu F, et al.: Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood 2012, 119:5688-5696.
  • [19]Li Y, Yee C: IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes. Blood 2008, 111:229-235.
  • [20]Li Y, Bleakley M, Yee C: IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 2005, 175:2261-2269.
  • [21]Lang PA, Lang KS, Xu HC, Grusdat M, Parish IA, Recher M, et al.: Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci U S A 2012, 109:1210-1215.
  • [22]Zhang L, Feldman SA, Zheng Z, Chinnasamy N, Xu H, Nahvi AV, et al.: Evaluation of gamma-retroviral vectors that mediate the inducible expression of IL-12 for clinical application. J Immunother 2012, 35:430-439.
  • [23]Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, et al.: IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 2011, 121:4746-4757.
  • [24]Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z, et al.: Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 2010, 70:6725-6734.
  • [25]Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al.: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011, 29:917-924.
  • [26]Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006, 314:126-129.
  • [27]Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al.: B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012, 119:2709-2720.
  • [28]Porter DL, Levine BL, Kalos M, Bagg A, June CH: Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011, 365:725-733.
  • [29]Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, et al.: Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011, 118:4817-4828.
  • [30]Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M: Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 2012, 31:71-75.
  • [31]Hanada K, Restifo NP: Double or nothing on cancer immunotherapy. Nat Biotechnol 2013, 31:33-34.
  • [32]Gattinoni L, Klebanoff CA, Restifo NP: Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 2012, 12:671-684.
  • [33]Restifo NP, Dudley ME, Rosenberg SA: Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012, 12:269-281.
  • [34]Klebanoff CA, Gattinoni L, Restifo NP: Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother 2012, 35:651-660.
  • [35]Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, et al.: IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 2008, 111:5326-5333.
  • [36]Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, Switzer K, et al.: Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 2011, 71:3516-3527.
  • [37]Wolfl M, Merker K, Morbach H, Van Gool SW, Eyrich M, Greenberg PD, et al.: Primed tumor-reactive multifunctional CD62L+ human CD8+ T cells for immunotherapy. Cancer Immunol Immunother 2011, 60:173-186.
  • [38]Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al.: HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer 2012, 118:4354-4362.
  • [39]Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, der Berends-van Meer DM, Vloon AP, et al.: Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 2008, 14:169-177.
  • [40]Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Der Berends-van Meer DM, et al.: Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 2008, 14:178-187.
  • [41]Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Der Berends-van Meer DM, Vloon AP, et al.: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 2009, 361:1838-1847.
  • [42]Melief CJ: Treatment of established lesions caused by high-risk human papilloma virus using a synthetic vaccine. J Immunother 2012, 35:215-216.
  • [43]Watchmaker PB, Berk E, Muthuswamy R, Mailliard RB, Urban JA, Kirkwood JM, et al.: Independent regulation of chemokine responsiveness and cytolytic function versus CD8+ T cell expansion by dendritic cells. J Immunol 2010, 184:591-597.
  • [44]Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, et al.: Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011, 29:330-336.
  • [45]Muthuswamy R, Berk E, Junecko BF, Zeh HJ, Zureikat AH, Normolle D, et al.: NF-kappaB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res 2012, 72:3735-3743.
  • [46]Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, et al.: Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 1999, 6:409-422.
  • [47]Gomella LG, Mastrangelo MJ, McCue PA, Maguire HC Jr, Mulholland SG, Lattime EC: Phase i study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer. J Urol 2001, 166:1291-1295.
  • [48]Rommelfanger DM, Wongthida P, Diaz RM, Kaluza KM, Thompson JM, Kottke TJ, et al.: Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive T-cell transfer. Cancer Res 2012, 72:4753-4764.
  • [49]Pulido J, Kottke T, Thompson J, Galivo F, Wongthida P, Diaz RM, et al.: Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol 2012, 30:337-343.
  • [50]Wallecha A, French C, Petit R, Singh R, Amin A, Rothman J: Lm-LLO-based immunotherapies and HPV-associated disease. J Oncol 2012, 201(2):542851.
  • [51]Sutton VR, Sedelies K, Dewson G, Christensen ME, Bird PI, Johnstone RW, et al.: Granzyme B triggers a prolonged pressure to die in Bcl-2 overexpressing cells, defining a window of opportunity for effective treatment with ABT-737. Cell Death Dis 2012, 3:e344.
  • [52]Vo DD, Prins RM, Begley JL, Donahue TR, Morris LF, Bruhn KW, et al.: Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824. Cancer Res 2009, 69:8693-8699.
  • [53]Koya RC, Mok S, Otte N, Blacketor KJ, Comin-Anduix B, Tumeh PC, et al.: BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res 2012, 72:3928-3937.
  • [54]Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al.: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012, 366:707-714.
  • [55]Dematteo RP: Personalized therapy: prognostic factors in gastrointestinal stromal tumor (GIST). J Gastrointest Surg 2012, 16:1645-1647.
  • [56]Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, et al.: Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol 2008, 26:620-625.
  • [57]Dematteo RP, Ballman KV, Antonescu CR, Maki RG, Pisters PW, Demetri GD, et al.: Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 2009, 373:1097-1104.
  • [58]Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C, et al.: Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 2004, 114:379-388.
  • [59]Menard C, Blay JY, Borg C, Michiels S, Ghiringhelli F, Robert C, et al.: Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res 2009, 69:3563-3569.
  • [60]Delahaye NF, Rusakiewicz S, Martins I, Menard C, Roux S, Lyonnet L, et al.: Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 2011, 17:700-707.
  • [61]Cesano A, Parkinson D: Applications of multiparametric flow cytometry: providing new insights into biology to bridge the gap between research discovery and clinical application. Cytometry A 2012, 81:732-733.
  • [62]Longo DM, Louie B, Putta S, Evensen E, Ptacek J, Cordeiro J, et al.: Single-cell network profiling of peripheral blood mononuclear cells from healthy donors reveals age- and race-associated differences in immune signaling pathway activation. J Immunol 2012, 188:1717-1725.
  • [63]Bendall SC, Simonds EF, Qiu P, Amir e, Krutzik PO, Finck R, et al.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011, 332:687-696.
  • [64]Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, et al.: Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 2012, 30:858-867.
  文献评价指标  
  下载次数:5次 浏览次数:6次