期刊论文详细信息
Journal of Neuroinflammation
Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis
Klemens Ruprecht4  Florence C. Pache4  Friedemann Paul1  Judith Bellmann-Strobl1  Benjamin Meder5  Sven Jarius3  René M. Gieß4  Katharina Wakonig4  Catherina Pfuhl4  Janina R. Behrens4  Ludwig Rasche4  Christina Backes2  Jan Haas5  Eckart Meese6  Petra Leidinger6  Andreas Keller2 
[1] Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Berlin, Germany;Clinical Bioinformatics, Saarland University, Saarbrücken, Germany;Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany;Clinical and Experimental Multiple Sclerosis Research Center, Charité—Universitätsmedizin Berlin, Berlin, Germany;Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany;Human Genetics, Saarland University, Homburg, Germany
关键词: Next-generation sequencing;    Serum;    Whole blood;    Biomarker;    MicroRNAs;    Multiple sclerosis;    Neuromyelitis optica spectrum disorder;   
Others  :  1230494
DOI  :  10.1186/s12974-015-0418-1
 received in 2015-07-12, accepted in 2015-10-21,  发布年份 2015
【 摘 要 】

Background

Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) have a similar clinical phenotype but represent distinct diseases, requiring different therapies. MicroRNAs (miRNAs) are short non-coding RNAs whose expression profiles can serve as diagnostic biomarkers and which may be involved in the pathophysiology of neuroinflammatory diseases. Here, we analyzed miRNA profiles in serum and whole blood of patients with NMOSD and clinically isolated syndrome (CIS)/relapsing-remitting MS (RRMS) as well as healthy controls by next-generation sequencing (NGS).

Methods

MiRNA expression profiles were determined by NGS in sera of patients with aquaporin-4 antibody-positive NMOSD (n = 20), CIS/RRMS (n = 20), and healthy controls (n = 20) and in whole blood of patients with NMOSD (n = 11), CIS/RRMS (n = 60), and healthy controls (n = 43). Differentially expressed miRNAs were calculated by analysis of variance and t tests. All significance values were corrected for multiple testing. Selected miRNAs were validated in whole blood of patients with NMOSD (n = 18) and CIS/RRMS (n = 19) by quantitative real-time polymerase chain reaction (qRT-PCR).

Results

None of 261 miRNAs detected in serum but 178 of 416 miRNAs detected in whole blood showed significantly different expression levels among the three groups. Pairwise comparisons revealed 115 (NMOSD vs. CIS/RRMS), 141 (NMOSD vs. healthy controls), and 44 (CIS/RRMS vs. healthy controls) miRNAs in whole blood with significantly different expression levels. qRT-PCR confirmed different expression levels in whole blood of patients with NMOSD and CIS/RRMS for 9 out of 10 exemplarily chosen miRNAs. In silico enrichment analysis demonstrated an accumulation of altered miRNAs in NMOSD in particular in CD15 +cells (i.e., neutrophils and eosinophils).

Conclusions

This study identifies a set of miRNAs in whole blood, which may have the potential to discriminate NMOSD from CIS/RRMS and healthy controls. In contrast, miRNA profiles in serum do not appear to be promising diagnostic biomarkers for NMOSD. Enrichment of altered miRNAs in CD15 +neutrophils and eosinophils, which were previously implicated in the pathophysiology of NMOSD, suggests that miRNAs could be involved in the regulation of these cells in NMOSD.

【 授权许可】

   
2015 Keller et al.

附件列表
Files Size Format View
Fig. 5. 21KB Image download
Fig. 4. 32KB Image download
Fig. 3. 33KB Image download
Fig. 2. 17KB Image download
Fig. 1. 55KB Image download
Fig. 5. 21KB Image download
Fig. 4. 32KB Image download
Fig. 3. 33KB Image download
Fig. 2. 17KB Image download
Fig. 1. 55KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Jarius S, Wildemann B: The history of neuromyelitis optica. J Neuroinflammation 2013, 10:8. BioMed Central Full Text
  • [2]Jarius S, Wildemann B, Paul F: Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014, 176:149-164.
  • [3]Lennon V, Wingerchuk D, Kryzer T, Pittock S, Lucchinetti C, Fjihara K, et al.: A serum autoantibody marker for neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004, 364(9451):2106-2112.
  • [4]Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR: IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202:473-477.
  • [5]Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG: The spectrum of neuromyelitis optica. Lancet Neurol 2007, 6:805-815.
  • [6]Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al.: International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015, 85:177-189.
  • [7]Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, et al.: Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2014, 261:1-16.
  • [8]Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, et al.: Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation 2012, 9:14. BioMed Central Full Text
  • [9]Mealy MA, Wingerchuk DM, Greenberg BM, Levy M: Epidemiology of neuromyelitis optica in the United States: a multicenter analysis. Arch Neurol 2012, 69:1176-1180.
  • [10]Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, et al.: Toward the blood-borne miRNome of human diseases. Nat Methods 2011, 8:841-843.
  • [11]Otaegui D, Baranzini SE, Armananzas R, Calvo B, Munoz-Culla M, Khankhanian P, et al.: Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 2009, 4:e6309.
  • [12]Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, et al.: Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 2009, 4:e7440.
  • [13]Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al.: MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009, 10:1252-1259.
  • [14]Lindberg RL, Hoffmann F, Mehling M, Kuhle J, Kappos L: Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 2010, 40:888-898.
  • [15]De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, et al.: Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 2010, 226:165-171.
  • [16]Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S, Stewart GJ, et al.: MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 2010, 5:e12132.
  • [17]Guerau-de-Arellano M, Smith KM, Godlewski J, Liu Y, Winger R, Lawler SE, et al.: Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain 2011, 134:3578-3589.
  • [18]Fenoglio C, Cantoni C, De Riz M, Ridolfi E, Cortini F, Serpente M, et al.: Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neurosci Lett 2011, 504:9-12.
  • [19]Paraboschi EM, Solda G, Gemmati D, Orioli E, Zeri G, Benedetti MD, et al.: Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. Int J Mol Sci 2011, 12:8695-8712.
  • [20]Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T: Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One 2011, 6:e24604.
  • [21]Lorenzi JC, Brum DG, Zanette DL, de Paula Alves Souza A, Barbuzano FG, Dos Santos AC, et al.: miR-15a and 16–1 Are Downregulated in CD4(+) T Cells of Multiple Sclerosis Relapsing Patients. Int J Neurosci 2012, 122(8):466-471.
  • [22]Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L: Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012, 39(5):6219-6225.
  • [23]Martinelli-Boneschi F, Fenoglio C, Brambilla P, Sorosina M, Giacalone G, Esposito F, et al.: MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neurosci Lett 2012, 508:4-8.
  • [24]Sondergaard HB, Hesse D, Krakauer M, Sorensen PS, Sellebjerg F: Differential microRNA expression in blood in multiple sclerosis. Mult Scler 2013, 19:1849-1857.
  • [25]Keller A, Leidinger P, Steinmeyer F, Stahler C, Franke A, Hemmrich-Stanisak G, et al.: Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 2014, 20:295-303.
  • [26]Gandhi R, Healy B, Gholipour T, Egorova S, Musallam A, Hussain MS, et al.: Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 2013, 73:729-740.
  • [27]Jarius S, Probst C, Borowski K, Franciotta D, Wildemann B, Stoecker W, et al.: Standardized method for the detection of antibodies to aquaporin-4 based on a highly sensitive immunofluorescence assay employing recombinant target antigen. J Neurol Sci 2010, 291:52-56.
  • [28]Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al.: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011, 69:292-302.
  • [29]Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, et al.: A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 2013, 14:R78. BioMed Central Full Text
  • [30]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001, 25:402-408.
  • [31]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40:37-52.
  • [32]Meder B, Backes C, Haas J, Leidinger P, Stahler C, Grossmann T, et al.: Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem 2014, 60:1200-1208.
  • [33]Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, et al.: GeneTrail-advanced gene set enrichment analysis. Nucleic Acids Res 2007, 35:W186-W192.
  • [34]Schwarzenbach H, Nishida N, Calin GA, Pantel K: Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014, 11:145-156.
  • [35]de Candia P, Torri A, Pagani M, Abrignani S: Serum microRNAs as biomarkers of human lymphocyte activation in health and disease. Front Immunol 2014, 5:43.
  • [36]Freischmidt A, Muller K, Zondler L, Weydt P, Volk AE, Bozic AL, et al.: Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain 2014, 137:2938-2950.
  • [37]Jeanson-Leh L, Lameth J, Krimi S, Buisset J, Amor F, Le Guiner C, et al.: Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in golden retriever muscular dystrophy dogs and Duchenne muscular dystrophy patients. Am J Pathol 2014, 184(11):2885-2898.
  • [38]Kitley J, Leite MI, Kuker W, Quaghebeur G, George J, Waters P, et al.: Longitudinally extensive transverse myelitis with and without aquaporin 4 antibodies. JAMA Neurol 2013, 70:1375-1381.
  • [39]Albrechtsen M, Kerr MA: Characterization of human neutrophil glycoproteins expressing the CD15 differentiation antigen (3-fucosyl-N-acetyllactosamine). Br J Haematol 1989, 72:312-320.
  • [40]Gorczyca W, Sun ZY, Cronin W, Li X, Mau S, Tugulea S: Immunophenotypic pattern of myeloid populations by flow cytometry analysis. Methods Cell Biol 2011, 103:221-266.
  • [41]Jarius S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, Bergamaschi R, et al.: Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 2011, 306:82-90.
  • [42]Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A, Verkman AS, et al.: Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 2012, 71:323-333.
  • [43]Zhang H, Verkman AS: Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest 2013, 123:2306-2316.
  • [44]Pritchard CC, Cheng HH, Tewari M: MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012, 13:358-369.
  • [45]Guerau-de-Arellano M, Alder H, Ozer HG, Lovett-Racke A, Racke MK: miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol 2011, 248(1-2):32-39.
  文献评价指标  
  下载次数:20次 浏览次数:46次