Journal of Neuroinflammation | |
Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model | |
Christian Schwerk2  Horst Schroten2  Tobias Tenenbaum2  Hiroshi Ishikawa3  Norbert Gretz4  Peter Findeisen1  Christel Weiss5  Carolin Stump-Guthier2  Natascha Quednau2  Ulrike Steinmann2  Li Li4  Julia Borkowski2  | |
[1] Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, 68167, Germany;Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, 68167, Germany;Department of NDU Life Sciences, Nippon Dental University, School of Life Dentistry, Chiyoda-ku, Tokyo, Japan;Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, 68167, Germany;Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, 68167, Germany | |
关键词: Transcriptomics; Toll-like receptors; Neisseria meningitidis; Microarray; Host-pathogen interactions; Choroid plexus; Cellular immune response; Blood-cerebrospinal fluid barrier; | |
Others : 1150731 DOI : 10.1186/s12974-014-0163-x |
|
received in 2014-02-25, accepted in 2014-08-29, 发布年份 2014 | |
【 摘 要 】
Background
The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens.
Methods
Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm ?14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria.
Results
We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD?, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NF?B-mediated pro-inflammatory immune response involving up-regulation of the transcription factor I?B?. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the I?B? target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection.
Conclusions
Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator I?B?.
【 授权许可】
2014 Borkowski et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150405215111397.pdf | 1235KB | download | |
Figure 6. | 39KB | Image | download |
Figure 5. | 46KB | Image | download |
Figure 4. | 42KB | Image | download |
Figure 3. | 38KB | Image | download |
Figure 2. | 34KB | Image | download |
Figure 1. | 22KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Stephens DS: Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 2009, 27(Suppl 2):B71-B77.
- [2]Join-Lambert O, Morand PC, Carbonnelle E, Coureuil M, Bille E, Bourdoulous S, Nassif X: Mechanisms of meningeal invasion by a bacterial extracellular pathogen, the example of Neisseria meningitidis. Prog Neurobiol 2010, 91:130-139.
- [3]Brandtzaeg P, van Deuren M: Classification and pathogenesis of meningococcal infections. Methods Mol Biol 2012, 799:21-35.
- [4]Engelhardt B, Sorokin L: The blood¿brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 2009, 31:497-511.
- [5]Guarner J, Greer PW, Whitney A, Shieh WJ, Fischer M, White EH, Carlone GM, Stephens DS, Popovic T, Zaki SR: Pathogenesis and diagnosis of human meningococcal disease using immunohistochemical and PCR assays. Am J Clin Pathol 2004, 122:754-764.
- [6]Pron B, Taha MK, Rambaud C, Fournet JC, Pattey N, Monnet JP, Musilek M, Beretti JL, Nassif X: Interaction of Neisseria maningitidis with the components of the blood¿brain barrier correlates with an increased expression of PilC. J Infect Dis 1997, 176:1285-1292.
- [7]Schwerk C, Papandreou T, Schuhmann D, Nickol L, Borkowski J, Steinmann U, Quednau N, Stump C, Weiss C, Berger J, Wolburg H, Claus H, Vogel U, Ishikawa H, Tenenbaum T, Schroten H: Polar invasion and translocation of Neisseria meningitidis and streptococcus Suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS One 2012, 7:e30069.
- [8]Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M: Meningococcal interactions with the host. Vaccine 2009, 27(Suppl 2):B78-B89.
- [9]Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell 2006, 124:783-801.
- [10]Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010, 11:373-384.
- [11]Hayden MS, Ghosh S: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012, 26:203-234.
- [12]Yamamoto M, Takeda K: Role of nuclear IkappaB proteins in the regulation of host immune responses. J Infect Chemother 2008, 14:265-269.
- [13]Trinh DV, Zhu N, Farhang G, Kim BJ, Huxford T: The nuclear I kappaB protein I kappaB zeta specifically binds NF-kappaB p50 homodimers and forms a ternary complex on kappaB DNA. J Mol Biol 2008, 379:122-135.
- [14]Akira S, Taga T, Kishimoto T: Interleukin-6 in biology and medicine. Adv Immunol 1993, 54:1-78.
- [15]Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K, Saitoh T, Yamaoka S, Yamamoto N, Yamamoto S, Muta T, Takeda K, Akira S: Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 2004, 430:218-222.
- [16]Seshadri S, Kannan Y, Mitra S, Parker-Barnes J, Wewers MD: MAIL regulates human monocyte IL-6 production. J Immunol 2009, 183:5358-5368.
- [17]Kitamura H, Kanehira K, Okita K, Morimatsu M, Saito M: MAIL, a novel nuclear I kappa B protein that potentiates LPS-induced IL-6 production. FEBS Lett 2000, 485:53-56.
- [18]Yamazaki S, Muta T, Matsuo S, Takeshige K: Stimulus-specific induction of a novel nuclear factor-kappaB regulator, IkappaB-zeta, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. J Biol Chem 2005, 280:1678-1687.
- [19]Lorenz J, Zahlten J, Pollok I, Lippmann J, Scharf S, N¿Guessan PD, Opitz B, Flieger A, Suttorp N, Hippenstiel S, Schmeck B: Legionella pneumophila-induced IkappaBzeta-dependent expression of interleukin-6 in lung epithelium. Eur Respir J 2011, 37:648-657.
- [20]Haruta H, Kato A, Todokoro K: Isolation of a novel interleukin-1-inducible nuclear protein bearing ankyrin-repeat motifs. J Biol Chem 2001, 276:12485-12488.
- [21]Scheld WM, Koedel U, Nathan B, Pfister HW: Pathophysiology of bacterial meningitis: mechanism (s) of neuronal injury. J Infect Dis 2002, 186(Suppl 2):S225-S233.
- [22]Spanaus KS, Nadal D, Pfister HW, Seebach J, Widmer U, Frei K, Gloor S, Fontana A: C-X-C and C-C chemokines are expressed in the cerebrospinal fluid in bacterial meningitis and mediate chemotactic activity on peripheral blood-derived polymorphonuclear and mononuclear cells in vitro. J Immunol 1997, 158:1956-1964.
- [23]van Furth AM, Roord JJ, van Furth R: Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 1996, 64:4883-4890.
- [24]Engelhardt B, Wolburg-Buchholz K, Wolburg H: Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 2001, 52:112-129.
- [25]Schwerk C, Adam R, Borkowski J, Schneider H, Klenk M, Zink S, Quednau N, Schmidt N, Stump C, Sagar A, Spellerberg B, Tenenbaum T, Koczan D, Klein-Hitpass L, Schroten H: In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines. Microbes Infect 2011, 13:953-962.
- [26]Weber JR, Tuomanen EI: Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol 2007, 184:45-52.
- [27]Koedel U, Klein M, Pfister HW: New understandings on the pathophysiology of bacterial meningitis. Curr Opin Infect Dis 2010, 23:217-223.
- [28]Gerber J, Nau R: Mechanisms of injury in bacterial meningitis. Curr Opin Neurol 2010, 23:312-318.
- [29]Ishiwata I, Ishiwata C, Ishiwata E, Sato Y, Kiguchi K, Tachibana T, Hashimoto H, Ishikawa H: Establishment and characterization of a human malignant choroids plexus papilloma cell line (HIBCPP). Hum Cell 2005, 18:67-72.
- [30]McGuinness BT, Clarke IN, Lambden PR, Barlow AK, Poolman JT, Jones DM, Heckels JE: Point mutation in meningococcal por A gene associated with increased endemic disease. Lancet 1991, 337:514-517.
- [31]Ram S, Cox AD, Wright JC, Vogel U, Getzlaff S, Boden R, Li J, Plested JS, Meri S, Gulati S, Stein DC, Richards JC, Moxon ER, Rice PA: Neisserial lipooligosaccharide is a target for complement component C4b. inner core phosphoethanolamine residues define C4b linkage specificity. J Biol Chem 2003, 278:50853-50862.
- [32]Claus H, Maiden MC, Maag R, Frosch M, Vogel U: Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology 2002, 148:1813-1819.
- [33]Claus H, Maiden MC, Wilson DJ, McCarthy ND, Jolley KA, Urwin R, Hessler F, Frosch M, Vogel U: Genetic analysis of meningococci carried by children and young adults. J Infect Dis 2005, 191:1263-1271.
- [34]van der Voort ER, van der Ley P, van der Biezen J, George S, Tunnela O, van Dijken H, Kuipers B, Poolman J: Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine. Infect Immun 1996, 64:2745-2751.
- [35]Jolley KA, Maiden MC: BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010, 11:595. BioMed Central Full Text
- [36]Beissbarth T, Speed TP: GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 2004, 20:1464-1465.
- [37]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102:15545-15550.
- [38]Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34:267-273.
- [39]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. the Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
- [40]Spandidos A, Wang X, Wang H, Seed B: PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 2010, 38:D792-D799.
- [41]Wang X, Spandidos A, Wang H, Seed B: PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res 2012, 40:D1144-D1149.
- [42]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
- [43]Lefever S, Vandesompele J, Speleman F, Pattyn F: RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res 2009, 37:D942-D945.
- [44]Schneider H, Weber CE, Schoeller J, Steinmann U, Borkowski J, Ishikawa H, Findeisen P, Adams O, Doerries R, Schwerk C, Schroten H, Tenenbaum T: Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res 2012, 170:66-74.
- [45]van Sorge NM, Zialcita PA, Browne SH, Quach D, Guiney DG, Doran KS: Penetration and activation of brain endothelium by Salmonella enterica serovar Typhimurium. J Infect Dis 2011, 203:401-405.
- [46]Nagyoszi P, Wilhelm I, Farkas AE, Fazakas C, Dung NT, Hasko J, Krizbai IA: Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int 2010, 57:556-564.
- [47]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034. BioMed Central Full Text
- [48]Benga L, Goethe R, Rohde M, Valentin-Weigand P: Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol 2004, 6:867-881.
- [49]Tauber MG, Moser B: Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin Infect Dis 1999, 28:1-11. Quiz 12
- [50]Massari P, Visintin A, Gunawardana J, Halmen KA, King CA, Golenbock DT, Wetzler LM: Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J Immunol 2006, 176:2373-2380.
- [51]Koedel U: Toll-like receptors in bacterial meningitis. Curr Top Microbiol Immunol 2009, 336:15-40.
- [52]Wells DB, Tighe PJ, Wooldridge KG, Robinson K, Ala¿ Aldeen DA: Differential gene expression during meningeal-meningococcal interaction: evidence for self-defense and early release of cytokines and chemokines. Infect Immun 2001, 69:2718-2722.
- [53]Schubert-Unkmeir A, Sokolova O, Panzner U, Eigenthaler M, Frosch M: Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infect Immun 2007, 75:899-914.
- [54]Royer PJ, Rogers AJ, Wooldridge KG, Tighe P, Mahdavi J, Rittig MG, Ala¿Aldeen D: Deciphering the contribution of human meningothelial cells to the inflammatory and antimicrobial response at the meninges. Infect Immun 2013, 81:4299-4310.
- [55]Christodoulides M, Makepeace BL, Partridge KA, Kaur D, Fowler MI, Weller RO, Heckels JE: Interaction of Neisseria meningitidis with human meningeal cells induces the secretion of a distinct group of chemotactic, proinflammatory, and growth-factor cytokines. Infect Immun 2002, 70:4035-4044.
- [56]Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H, Akira S: Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 2009, 458:1185-1190.
- [57]Jaerve A, Muller HW: Chemokines in CNS injury and repair. Cell Tissue Res 2012, 349:229-248.
- [58]Steinmann U, Borkowski J, Wolburg H, Schroppel B, Findeisen P, Weiss C, Ishikawa H, Schwerk C, Schroten H, Tenenbaum T: Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro. J Neuroinflammation 2013, 10:31. BioMed Central Full Text
- [59]Hamilton JA: Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008, 8:533-544.
- [60]Virji M, Makepeace K, Peak IR, Ferguson DJ, Jennings MP, Moxon ER: Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol 1995, 18:741-754.
- [61]Unkmeir A, Latsch K, Dietrich G, Wintermeyer E, Schinke B, Schwender S, Kim KS, Eigenthaler M, Frosch M: Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 2002, 46:933-946.
- [62]Zughaier SM: Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol 2011, 89:469-480.
- [63]Zughaier SM, Svoboda P, Pohl J, Stephens DS, Shafer WM: The human host defense peptide LL-37 interacts with Neisseria meningitidis capsular polysaccharides and inhibits inflammatory mediators release. PLoS One 2010, 5:e13627.
- [64]Laing KJ, Secombes CJ: Chemokines. Dev Comp Immunol 2004, 28:443-460.
- [65]Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK: Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 2002, 43:1555-1564.
- [66]Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M: Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 2005, 73:4653-4667.
- [67]Hammerschmidt S, Hilse R, van Putten JP, Gerardy-Schahn R, Unkmeir A, Frosch M: Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J 1996, 15:192-198.
- [68]Cartwright K: Meningococcal carriage and disease. In Meningococcal Disease. Edited by Chichester CK. John Wiley & Sons, UK; 1995:115-146.
- [69]Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, Frosch M: Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci U S A 2008, 105:3473-3478.
- [70]Nassif X: Interactions between encapsulated Neisseria meningitidis and host cells. Int Microbiol 1999, 2:133-136.
- [71]Mogensen TH, Paludan SR, Kilian M, Ostergaard L: Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 2006, 80:267-277.
- [72]Tenenbaum T, Papandreou T, Gellrich D, Friedrichs U, Seibt A, Adam R, Wewer C, Galla HJ, Schwerk C, Schroten H: Polar bacterial invasion and translocation of Streptococcus suis across the blood-cerebrospinal fluid barrier in vitro. Cell Microbiol 2009, 11:323-336.
- [73]Segura M, Stankova J, Gottschalk M: Heat-killed Streptococcus suis capsular type 2 strains stimulate tumor necrosis factor alpha and interleukin-6 production by murine macrophages. Infect Immun 1999, 67:4646-4654.
- [74]Graveline R, Segura M, Radzioch D, Gottschalk M: TLR2-dependent recognition of Streptococcus suis is modulated by the presence of capsular polysaccharide which modifies macrophage responsiveness. Int Immunol 2007, 19:375-389.
- [75]Fowler MI, Yin KY, Humphries HE, Heckels JE, Christodoulides M: Comparison of the inflammatory responses of human meningeal cells following challenge with Neisseria lactamica and with Neisseria meningitidis. Infect Immun 2006, 74:6467-6478.
- [76]Wong HEE, Li MS, Kroll JS, Hibberd ML, Langford PR: Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica. PLoS One 2011, 6(10):e26130.
- [77]Deghmane AE, El Kafsi H, Giorgini D, Abaza A, Taha MK: Late repression of NF-kappaB activity by invasive but not non-invasive meningococcal isolates is required to display apoptosis of epithelial cells. PLoS Pathog 2011, 7:e1002403.
- [78]Lupo P, Chang YC, Kelsall BL, Farber JM, Pietrella D, Vecchiarelli A, Leon F, Kwon-Chung KJ: The presence of capsule in Cryptococcus neoformans influences the gene expression profile in dendritic cells during interaction with the fungus. Infect Immun 2008, 76:1581-1589.
- [79]Chapman SJ, Khor CC, Vannberg FO, Rautanen A, Segal S, Moore CE, Davies RJ, Day NP, Peshu N, Crook DW, Berkley JA, Williams TN, Scott JA, Hill AV: NFKBIZ polymorphisms and susceptibility to pneumococcal disease in European and African populations. Genes Immun 2010, 11:319-325.
- [80]Pridmore AC, Wyllie DH, Abdillahi F, Steeghs L, van der Ley P, Dower SK, Read RC: A lipopolysaccharide-deficient mutant of Neisseria meningitidis elicits attenuated cytokine release by human macrophages and signals via toll-like receptor (TLR) 2 but not via TLR4/MD2. J Infect Dis 2001, 183:89-96.
- [81]Laflamme N, Echchannaoui H, Landmann R, Rivest S: Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 2003, 33:1127-1138.
- [82]Laflamme N, Rivest S: Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001, 15:155-163.
- [83]Bsibsi M, Ravid R, Gveric D, van Noort JM: Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002, 61:1013-1021.
- [84]Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013, 341:1250-1253.
- [85]Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM: Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013, 341:1246-1249.
- [86]Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, Akakura R, Yoshida M, Kawalec M, Reichhart JM, Mizushima T, Sasakawa C: The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 2013, 13:570-583.
- [87]Kajiwara Y, Schiff T, Voloudakis G, Gama Sosa MA, Elder G, Bozdagi O, Buxbaum JD: A critical role for human caspase-4 in endotoxin sensitivity. J Immunol 2014, 193:335-343.