期刊论文详细信息
Journal of Translational Medicine
Coculture with hematopoietic stem cells protects cardiomyocytes against apoptosis via paracrine activation of AKT
Norbert Frey2  Hugo A Katus1  Jutta Krebs1  Volker Eckstein3  Rainer Will1  Constantin Kühl2  Matthias Lutz2  Mark Rosenberg2 
[1] Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany;Department of Internal Medicine III (Cardiology and Angiology), University Medical Center Schleswig-Holstein, Campus Kiel, Schittenhelmstr.12, D-24105, Kiel, Germany;Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
关键词: Paracrine;    Apoptosis;    Cardiomyocytes;    Stem cells;   
Others  :  1205966
DOI  :  10.1186/1479-5876-10-115
 received in 2011-09-22, accepted in 2012-06-06,  发布年份 2012
PDF
【 摘 要 】

Background

Previous experimental studies concluded that stem cells (SC) may exert their beneficial effects on the ischemic heart by paracrine activation of antiapoptotic pathways. In order to identify potential cardioprotective mediators, we performed a systematic analysis of the differential gene expression of hematopoietic SC after coculture with cardiomyocytes (CM).

Methods

After 48 h of coculture with neonatal rat ventricular CM (NRVCM), two consecutive cell sorting steps generated a highly purified population of conditioned murine hematopoietic SC (>99%). Next, a genome-wide microarray analysis of cocultured vs. monocultured hematopoietic SC derived from three independent experiments was performed. The analysis of differentially expressed genes was focused on products that are secretable and/or membrane-bound and potentially involved in antiapoptotic signalling.

Results

We found CCL-12, Macrophage Inhibitory Factor, Fibronectin and connexin 40 significantly upregulated in our coculture model. An ELISA of cell culture supernatants was performed to confirm secretion of candidate genes and showed that coculture supernatants revealed markedly higher CCL-12 concentrations. Moreover, we stimulated NRVCM with concentrated coculture supernatants which resulted in a significant reduction of apoptosis compared to monoculture-derived supernatant. Mechanistically, NRVCMs stimulated with coculture supernatants showed a higher level of AKT-phosphorylation, consistent with enhanced antiapoptotic signaling.

Conclusion

In summary, our results show that the interaction between hematopoietic SC and NRVCM led to a modified gene expression and induction of antiapoptotic pathways. These findings may thus at least in part explain the cardioprotective effects of hematopoietic SC.

【 授权许可】

   
2012 Rosenberg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150526112515245.pdf 2018KB PDF download
Figure 6. 23KB Image download
Figure 5. 46KB Image download
Figure 4. 45KB Image download
Figure 3. 50KB Image download
Figure 2. 81KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]MacLellan WR, Schneider MD: Genetic dissection of cardiac control pathways. Annu Rev Physiol 2000, 62:289-319.
  • [2]Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B: Anversa: Adult cardiac stem cells are mutipotent and support myocardial regeneration. Cell 2003, 114:763-776.
  • [3]Jackson K, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA: Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001, 107:1395-1402.
  • [4]Murry CE, Reinecke H, Pabon LM: Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 2006, 47:1777-1785.
  • [5]Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P: Bone marrow cells regenerate infarcted myocardium. Nature 2001, 410:701-705.
  • [6]Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004, 428:664-668.
  • [7]Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC: Haematopoietic stem cells adopt mature haematopoietic fates in ischemic myocardium. Nature 2004, 428:668-673.
  • [8]Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Eppstein SE: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004, 94:678-685.
  • [9]Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH, Johnson KL, Aikawa R, Asahara T, Losordo DW: Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 2005, 115:326-338.
  • [10]Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S: Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005, 112:1128-1135.
  • [11]Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006, 20:661-669.
  • [12]Kuhn C, Frank D, Will R, Jaschinski C, Frauen R, Katus HA, Frey N: DYRK1A is a novel negative regulator of cardiomyocyte hypertrophy. J Biol Chem 2009, 284:17320-17327.
  • [13]Frank D, Kuhn C, van Eickels M, Gehring D, Hanselmann C, Lippl S, Will R, Katus HA, Frey N: Calsarcin-1 protects against angiotensin-II induced cardiac hypertrophy. Circulation 2007, 116:2587-2596.
  • [14]Lutz M, Rosenberg M, Kiessling F, Eckstein V, Heger T, Krebs J, Ho AD, Katus HA, Frey N: Local injection of stem cell factor (SCF) improves myocardial homing of systemically delivered c-kit 1 bone marrow-derived stem cells. Cardiovasc Res 2008, 77:143-150.
  • [15]DeGeorge BR, Rosenberg M, Eckstein V, Gao E, Herzog N, Katus HA, Koch WJ, Frey N, Most P: BMP-2 and FGF-2 Synergistically Facilitate Adoption of a Cardiac Phenotype in Somatic Bone Marrow c-kit+/Sca-1+ Stem Cells. CTS 2008, 1:116-125.
  • [16]Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P: Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 1992, 89:3010-3014.
  • [17]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 1995, 57:125-133.
  • [18]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  • [19]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 2009, 4:44-57.
  • [20]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  • [21]Gosselin RD, Varela C, Banisadr G, Mechighel P, Rostene W, Kitabgi P, Melik-Parsadaniantz S: Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 2005, 95:1023-1033.
  • [22]Lue H, Thiele M, Franz J, Dahl E, Speckgens S, Leng L, Fingerle-Rowson G, Bucala R, Luscher B, Bernhagen J: Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene 2007, 26:5046-5059.
  • [23]Fornaro M, Plescia J, Chheang S, Tallini G, Zhu YM, King M, Altieri DC, Languino LR: Fibronectin Protects Prostate Cancer Cells from Tumor Necrosis Factor-α-induced Apoptosis via the AKT/Survivin Pathway. J Biol Chem 2003, 278:50402-50411.
  • [24]Sarafi M, Garcia-Zepeda E, MacLean J, Charo I, Luster A: Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J Exp Med 1997, 185:99-109.
  • [25]Jia G, Gonzalo J, Lloyd C, Kremer L, Lu L, Martinez-A C, Wershil B, Gutierrez-Ramos J: Distinct expression and function of the novel mouse chemokine monocyte chemotactic protein-5 in lung allergic inflammation. J Exp Med 1996, 184:1939-1951.
  • [26]Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE: Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 2006, 98:1177-1185.
  • [27]Webb A, Johnson A, Fortunato M, Platt A, Crabbe T, Christie MI, Watt GF, Ward SG, Jopling LA: Evidence for PI-3 K-dependent migration of Th17-polarized cells in response to CCR2 and CCR6 agonists. J Leukoc Biol 2008, 84:1202-1212.
  • [28]Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R: MIF as a glucocorticoid-induced modulator of cytokine production. Nature 1995, 377:68-71.
  • [29]Calandra T, Bernhagen J, Mitchell RA, Bucala R: The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 1994, 179:1895-1902.
  • [30]Burger-Kentischer A, Goebel H, Seiler R, Fraedrich G, Schaefer HE, Dimmeler S, Kleemann R, Bernhagen J, Ihling C: Expression of macrophage migration inhibitory factor in different stages of human atherosclerosis. Circulation 2002, 105:1561-1566.
  • [31]Willis MS, Carlson DL, Dimaio JM, White MD, White DJ, Adams GA, Horton JW, Giroir BP: Macrophage migration inhibitory factor mediates late cardiac dysfunction after burn injury. Am J Physiol Heart Circ Physiol. 2005, 288:H795-H804.
  • [32]Zernecke A, Bernhagen J, Weber C: Macrophage migration inhibitory factor in cardiovascular disease. Circulation 2008, 117:1594-1602.
  • [33]Miller EJ, Li J, Leng L, McDonald C, Atsumi T, Bucala R, Young LH: Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature 2008, 451:578-582.
  • [34]Frisch SM, Ruoslahti E: Integrins and anoikis. Curr Opin Cell Biol 1997, 9:701-706.
  • [35]Kapila YL, Wang S, Johnson PW: Mutations in the heparin binding domain of fibronectin in cooperation with the V region induce decreases in pp 125 (FAK) levels plus proteoglycan-mediated apoptosis via caspases. J Biol Chem 1999, 274:30906-30913.
  • [36]Zhang Z, Vuori K, Wang H, Reed JC, Ruoslahti E: Integrin activation by R-ras. Cell 1996, 85:61-69.
  • [37]O´Brien V, Frisch SM, Juliano RL: Expression of the integrin alpha 5 subunit in HT29 colon carcinoma cells suppresses apoptosis triggered by serum deprivation. Exp Cell Res 1996, 224:208-213.
  • [38]Wu X, Sun Z, Foskett A, Trzeciakowski JP, Meininger GA, Muthuchamy M: Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am J Physiol Heart Circ Physiol 2010, 298:H2071-H2081.
  • [39]Gu J, Fujibayashi A, Yamada KM, Sekiguchi K: Laminin-10/11 and Fibronectin Differentially Prevent Apoptosis Induced by Serum Removal via Phosphatidylinositol 3-Kinase/Akt- and MEK1/ERK-dependent Pathways. J Biol Chem 2002, 277:19922-19928.
  • [40]Kumar NM, Gilula NB: The gap junction communication channel. Cell 1996, 84:381-388.
  • [41]Lin JH, Yang J, Liu S, Takano T, Wang X, Gao Q, Willecke K, Nedergaard M: Connexin mediates gap junction-independent resistance to cellular injury. J Neurosci 2003, 23:430-441.
  • [42]Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005, 11:367-368.
  • [43]Takahashi M, Li TS, Suzuki R, Kobayashi T, Ito H, Ikeda Y, Matsuzaki M, Hamano K: Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 2006, 291:H886-H893.
  • [44]Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M: In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 2007, 42:441-448.
  • [45]Uemura R, Xu M, Ahmad N, Ashraf M: Bone marrow stem cells prevent left ventricular remodelling of ischemic heart through paracrine signalling. Circ Res 2006, 98:1414-1421.
  • [46]Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP, Ganser A, Drexler H, Wollert KC: Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Hear J 2008, 29:2851-2858.
  • [47]Cho HJ, Lee N, Lee JY, Choi YJ, Li M, Wecker A, Jeong JO, Curry C, Qin G, Yoon YS: Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 2007, 204:3257-3269.
  文献评价指标  
  下载次数:14次 浏览次数:6次