期刊论文详细信息
Journal of Neuroinflammation
Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation
Gary L Wenk2  Linda Adzovic2  Alexis M Crockett2  Roxanne M Kaercher2  Sarah E Royer1  Heather M D’Angelo2  Sarah C Hopp1 
[1] Departments of Neuroscience, Ohio State University, Columbus 43210, OH, USA;Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus 43210, OH, USA
关键词: Spatial memory;    L-type voltage-dependent calcium channels;    Ryanodine receptors;    Neuroinflammation;    Calcium;   
Others  :  1228119
DOI  :  10.1186/s12974-015-0262-3
 received in 2014-12-29, accepted in 2015-02-09,  发布年份 2015
PDF
【 摘 要 】

Background

Chronic neuroinflammation and calcium (Ca+2) dysregulation are both components of Alzheimer’s disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca+2 homeostasis via L-type voltage-dependent Ca+2 channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca+2 dysregulation.

Methods

The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene.

Results

LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca+2 uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo.

Conclusions

Taken together, these data indicate that Ca+2 dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca+2 channels are dysregulated during chronic neuroinflammation. Ca+2-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca+2 dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.

【 授权许可】

   
2015 Hopp et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150930094845108.pdf 1955KB PDF download
Figure 6. 95KB Image download
Figure 5. 67KB Image download
Figure 4. 60KB Image download
Figure 3. 50KB Image download
Figure 2. 49KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cooper NR, et al.: Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21:383-421.
  • [2]Hanisch U-K, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387-94.
  • [3]Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL: Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 1998, 780:294-303.
  • [4]Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL: Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res 2000, 859:157-66.
  • [5]Hauss-Wegrzyniak B, Vraniak PD, Wenk GL: LPS-induced neuroinflammatory effects do not recover with time. NeuroRep 2000, 11:1759-63.
  • [6]Hauss-Wegrzyniak B, Lynch MA, Vraniak PD, Wenk GL: Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp Neurol 2002, 176:336-41.
  • [7]Etcheberrigaray R, Hirashima N, Nee L, Prince J, Govoni S, Racchi M, et al.: Calcium responses in fibroblasts from asymptomatic members of Alzheimer’s disease families. Neurobiol Dis 1998, 5:37-45.
  • [8]Anekonda TS, Quinn JF: Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim Biophys Acta 1812, 2011:1584-90.
  • [9]Tollefson GD: Short-term effects of the calcium channel blocker nimodipine (Bay-e-9736) in the management of primary degenerative dementia. Biol Psychiat 1990, 27:1133-42.
  • [10]Bruno AM, Huang JY, Bennett DA, Marr RA, Hastings ML, Stutzmann GE: Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2012, 33:1001-6.
  • [11]Koran MEI, Hohman TJ, Thornton-Wells TA: Genetic interactions found between calcium channel genes modulate amyloid load measured by positron emission tomography. Human Gen 2014, 133:85-93.
  • [12]Hashioka S, Klegeris A, McGeer PL: Inhibition of human astrocyte and microglia neurotoxicity by Ca+2 channel blockers. Neuropharmacol 2012, 63:685-91.
  • [13]Li Y, Hu X, Liu Y, Bao Y, An L: Nimodipine protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. Neuropharmacol 2009, 56:580-9.
  • [14]Klegeris A, Choi HB, McLarnon JG, McGeer PL: Functional ryanodine receptors are expressed by human microglia and THP-1 cells: their possible involvement in modulation of neurotoxicity. J Neurosci Res 2007, 85:2207-15.
  • [15]McGeer PL, McGeer EG: NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 2007, 28:639-47.
  • [16]Sitcheran R, Gupta P, Fisher PB, Baldwin AS: Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 2005, 24:510-20.
  • [17]Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K: L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the “collusion” hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflam 2012, 9:275-82. BioMed Central Full Text
  • [18]Prow NA, Irani DN: The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 2008, 105:1276-86.
  • [19]Wu S-Z, Bodles A, Porter M, Griffin WS, Basile A, Barger S: Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflam 2004, 2004(1):2-9. BioMed Central Full Text
  • [20]Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al.: Interleukin-1beta enhances NMDA receptor-mediated intracellular Ca+2 increase through activation of the Src family of kinases. J Neurosci 2003, 23:8692-700.
  • [21]Orellana DI, Quintanilla RA, Gonzalez-Billault C, Maccioni RB: Role of the JAKs/STATs pathway in the intracellular Ca+2 changes induced by interleukin-6 in hippocampal neurons. Neurotox Res 2005, 8:295-304.
  • [22]Furukawa K, Mattson MP: The transcription factor NF-kappaB mediates increases in Ca+2 currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 1998, 70:1876-86.
  • [23]Friedrich O, Yi B, Edwards JN, Reischl B, Wirth-Hücking A, Buttgereit A: Interleukin-1α reversibly inhibits skeletal muscle ryanodine receptor: a novel mechanism for critical illness myopathy? Am J Respir Cell Mol Biol 2014, 50:1096-106.
  • [24]Palmi M, Meini A: Role of the nitric oxide/cyclic GMP/Ca2+ signaling pathway in the pyrogenic effect of interleukin-1beta. Molec Neurobiol 2002, 25:133-47.
  • [25]Min SS, Quan HY, Ma J, Han J-S, Jeon BH, Seol GH: Chronic brain inflammation impairs two forms of long-term potentiation in the rat hippocampal CA1 area. Neurosci Lett 2009, 456:20-4.
  • [26]Segal M, Manor D: Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N-methyl-D-aspartate. J Physiol 1992, 448:655-76.
  • [27]Lei SZ, Zhang D, Abele AE, Lipton SA: Blockade of NMDA receptor-mediated mobilization of intracellular Ca2+ prevents neurotoxicity. Brain Res 1992, 598:196-202.
  • [28]Foster TC: Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 2012, 96:283-303.
  • [29]Waltereit R, Dammermann B, Wulff P, Scafidi J, Staubli U, Kauselmann G, et al.: Arg31/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 2001, 21:5484-93.
  • [30]Brothers HM, Bardou I, Hopp SC, Kaercher RM, Corona AW, Fenn AM, et al.: Riluzole partially rescues age-associated, but not LPS-induced, loss of glutamate transporters and spatial memory. J Neuroimmune Pharmacol 2013, 8:1098-105.
  • [31]Bardou I, Brothers HM, Kaercher RM, Hopp SC, Wenk GL: Differential effects of duration and age on the consequences of neuroinflammation in the hippocampus. Neurobiol Aging 2013, 34:2293-30.
  • [32]Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL: Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neurosci 2006, 142:1303-15.
  • [33]Hopp SC, D’Angelo HM, Royer SE, Kaercher RM, Crockett AM, Adzovic L, et al.: Spatial memory deficits in aged rats correlate with markers of calcium dysregulation: differential rescue by L-VDCC and RyR antagonism. Neurosci 2014, 240:10-8.
  • [34]Thibault O, Landfield PW: Increase in single L-type Ca+2 channels in hippocampal neurons during aging. Science 1996, 272:1017-20.
  • [35]Kumar A, Foster TC: Enhanced long-term potentiation during aging is masked by processes involving intracellular calcium stores. J Neurophysiol 2004, 91:2437-44.
  • [36]Bodhinathan K, Kumar A, Foster TC: Redox sensitive calcium stores underlie enhanced after hyperpolarization of aged neurons: role for ryanodine receptor mediated calcium signaling. J Neurophysiol 2010, 104:2586-93.
  • [37]Disterhoft JF, Thompson LT, Moyer JR, Mogul DJ: Ca+2-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci 1996, 59:413-20.
  • [38]Sama DM, Mohmmad Abdul H, Furman JL, Artiushin IA, Szymkowski DE, Scheff SW, et al.: Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats. PLoS One 2012, 7:e38170.
  • [39]Borde M, Bonansco C: Fernández de Sevilla D, Le Ray D, Buño W. Voltage-clamp analysis of the potentiation of the slow Ca2 + −activated K+ current in hippocampal pyramidal neurons. Hippocampus 2000, 10:198-206.
  • [40]Clodfelter GV, Porter NM, Landfield PW, Thibault O: Sustained Ca2 + −induced Ca2 + −release underlies the post-glutamate lethal Ca2+ plateau in older cultured hippocampal neurons. Eur J Pharmacol 2002, 447:189-200.
  • [41]Chavis P, Fagni L, Lansman JB, Bockaert J: Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 1996, 382:719-22.
  • [42]Wenk GL, Parsons CG, Danysz W: Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 2006, 17:411-24.
  • [43]Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, et al.: Inhibition of activity-dependent Arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 2000, 20:3993-4001.
  • [44]Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK, et al.: Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 2005, 15:579-86.
  • [45]Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, et al.: Arc/Arg31 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 2006, 52:445-59.
  • [46]Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT: Increased expression of the immediate-early gene Arc/arg31 reduces AMPA receptor-mediated synaptic transmission. Neuron 2006, 52:461-74.
  • [47]Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM: Rapid translation of Arc/Arg31 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 2008, 59:84-97.
  • [48]Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, et al.: Arc/Arg31 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 2006, 52:475-84.
  • [49]Wiegert JS, Oertner TG: Long-term depression triggers the selective elimination of weakly integrated synapses. Proc Natl Acad Sci U S A 2013, 110:E4510-9.
  • [50]Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al.: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006, 281:21362-8.
  • [51]Santello M, Bezzi P, Volterra A: TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 2011, 69:988-1001.
  • [52]Simões AP, Duarte JA, Agasse F, Canas PM, Tomé AR, Agostinho P, et al.: Blockade of adenosine A(2A) receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway. J Neuroinflam 2012, 9:204-9. BioMed Central Full Text
  • [53]Mattsson P, Aldskogius H, Svensson M: Nimodipine-induced improved survival rate of facial motor neurons following intracranial transection of the facial nerve in the adult rat. J Neurosurg 1999, 90:760-5.
  • [54]Yanpallewar SU, Hota D, Rai S, Kumar M, Acharya SB: Nimodipine attenuates biochemical, behavioral and histopathological alterations induced by acute transient and long-term bilateral common carotid occlusion in rats. Pharmacol Res 2004, 49:143-50.
  • [55]Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I: Dantrolene is neuroprotective in Huntington’s disease transgenic mouse model. Mol Neurodegen 2011, 6:81-9. BioMed Central Full Text
  • [56]Oulès B, Del Prete D, Greco B, Zhan X, Lauritzen I, Sevalle J, et al.: Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012, 32:11820-34.
  • [57]Peng J, Liang G, Inan S, Wu Z, Joseph DJ, Meng Q, et al.: Dantrolene ameliorates cognitive decline and neuropathology in Alzheimer triple transgenic mice. Neurosci Lett 2012, 516:274-9.
  • [58]Chen X, Tang T-S, Tu H, Nelson O, Pook M, Hammer R, et al.: Deranged Ca+2 signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 2008, 28:12713-24.
  • [59]Möller T: Neuroinflammation in Huntington’s disease. J Neural Transm 2010, 117:1001-8.
  • [60]Cameron B, Landreth GE: Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis 2010, 37:503-9.
  • [61]Evert BO, Schelhaas J, Fleischer H, De Vos RAI, Brunt ER, Stenzel W, et al.: Neuronal intranuclear inclusions, dysregulation of cytokine expression and cell death in spinocerebellar ataxia type 3. Clin Neuropathol 2006, 25:272-81.
  • [62]Hoffmann A, Kann O, Ohlemeyer C, Hanisch U-K, Kettenmann H: Elevation of basal intracellular Ca+2 as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked Ca+2 signaling and control of release function. J Neurosci 2003, 23:4410-9.
  • [63]Colton CA, Jia M, Li MX, Gilbert DL: K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels. Am J Physiol 1994, 266:C1650-5.
  • [64]Salomone S, Soydan G, Moskowitz MA, Sims JR: Inhibition of cerebral vasoconstriction by dantrolene and nimodipine. Neurocrit Care 2009, 10:93-102.
  • [65]Quan N, Sundar SK, Weiss JM: Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. J Neuroimmunol 1994, 49:125-34.
  • [66]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-8.
  • [67]Kettenmann H, Hoppe D, Gottmann K, Banati R, Kreutzberg G: Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 1990, 26:278-87.
  • [68]De Jong EK, Dijkstra IM, Hensens M, Brouwer N, Van Amerongen M, Liem RSB, et al.: Vesicle-mediated transport and release of CCL21 in endangered neurons: a possible explanation for microglia activation remote from a primary lesion. J Neurosci 2005, 25:7548-57.
  文献评价指标  
  下载次数:2次 浏览次数:3次