期刊论文详细信息
Journal of Nanobiotechnology
Surface plasmon resonance based on molecularly imprinted nanoparticles for the picomolar detection of the iron regulating hormone Hepcidin-25
Alessandra Maria Bossi1  Domenico Girelli3  Annalisa Castagna3  Mirko Busato1  Erica Iacob2  Mario Barozzi2  Michele Bovi1  Ambra Vestri1  Erika Andreetto1  Lucia Cenci1 
[1] Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy;Center for Materials and Microsystems CMM-MNF, FBK Fondazione Bruno Kessler, Via Sommarive 18, Povo-Trento, 38123, Italy;Department of Medicine, University of Verona, Section of Internal Medicine B, Verona, 37134, Italy
关键词: Iron metabolism;    Surface plasmon resonance;    Biosensor;    Hepcidin;    Nanoparticles;    Molecularly imprinted polymers;   
Others  :  1224845
DOI  :  10.1186/s12951-015-0115-3
 received in 2014-11-05, accepted in 2015-08-10,  发布年份 2015
PDF
【 摘 要 】

Background

Molecularly imprinted polymer (MIP) technique is a powerful mean to produce tailor made synthetic recognition sites. Here precipitation polymerization was exploited to produce a library of MIP nanoparticles (NPs) targeting the N terminus of the hormone Hepcidin-25, whose serum levels correlate with iron dis-metabolisms and doping. Biotinylated MIP NPs were immobilized to NeutrAvidin™ SPR sensor chip. The response of the MIP NP sensor to Hepcidin-25 was studied.

Findings

Morphological analysis showed MIP NPs of 20–50 nm; MIP NP exhibited high affinity and selectivity for the target analyte: low nanomolar Kds for the interaction NP/Hepcidin-25, but none for the NP/non regulative Hepcidin-20. The MIP NP were integrated as recognition element in SPR allowing the detection of Hepcidin-25 in 3 min. Linearity was observed with the logarithm of Hepcidin-25 concentration in the range 7.2–720 pM. LOD was 5 pM. The response for Hepcidin-20 was limited. Hepcidin-25 determination in real serum samples spiked with known analyte concentrations was also attempted.

Conclusion

The integration of MIP NP to SPR allowed the determination of Hepcidin-25 at picomolar concentrations in short times outperforming the actual state of art. Optimization is still needed for real sample measurements in view of future clinical applications.

【 授权许可】

   
2015 Cenci et al.

【 预 览 】
附件列表
Files Size Format View
20150914093129297.pdf 1563KB PDF download
Fig.6. 12KB Image download
Fig.5. 35KB Image download
Fig.4. 27KB Image download
Fig.3. 56KB Image download
Fig.2. 60KB Image download
Fig.1. 34KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Chothia C, Janin J. Principles of protein recognition. Nature. 1975; 256:705-708.
  • [2]Levin KB, Dym O, Albeck S, Magdassi S, Keeble AH, Kleanthous C et al.. Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat Struct Mol Biol. 2009; 16:1049-1055.
  • [3]Dickert FL. Biomimetic receptors and sensors. Sensors. 2015; 14:22525-22531.
  • [4]Turner APF. Biosensors: sense and sensibility. Chem Soc Rev. 2013; 42:3184-3196.
  • [5]Cennamo N, Pesavento M, Lunelli L, Vanzetti L, Pederzolli C, Zeni L et al.. An easy way to realize SPR aptasensor: a multimode plastic optical fiber platform for cancer biomarkers detection. Talanta. 2015; 140:88-95.
  • [6]Wulff G, Sarhan A. Use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Edit. 1972; 11:341-344.
  • [7]Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem. 1981; 182:687-692.
  • [8]Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA et al.. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recogn. 2006; 19:106-180.
  • [9]Wackerlig J, Lieberzeit PA. Molecularly imprinted polymer nanoparticles in chemical sensing—synthesis, characterisation and application. Sens Actuat B Chem. 2014; 207:144-157.
  • [10]Biomaterials Haupt K. Plastic antibodies. Nat Mater. 2010; 9:612-614.
  • [11]Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit. 2014; 27:297-401.
  • [12]Vlatakis G, Andresson LI, Muller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993; 361:645-647.
  • [13]Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen BN, Karim K et al.. Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem. 2002; 74:1288-1293.
  • [14]Schweitz L, Andersson LI, Nilsson S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Anal Chem. 1997; 69:1179-1183.
  • [15]Holthoff EL, Bright FV. Molecularly templated materials in chemical sensing. Anal Chim Acta. 2007; 594:147-161.
  • [16]Volkert AA, Haes AJ. Advancements in nanosensors using plastic antibodies. Analyst. 2014; 139:21-31.
  • [17]Sharma PS, Iskierko Z, Pietrzyk-Le A, D’Souza F, Kutner W. Bioinspired intelligent molecularly imprinted polymers for chemosensing: a mini review. Electrochem Commun. 2015; 50:81-87.
  • [18]Li S, Cao S, Whitcombe MJ, Piletsky SA. Size matters: challenges in imprinting macromolecules. Prog Polym Sci. 2014; 39:145-163.
  • [19]Bossi A, Bonini F, Turner APF, Piletsky SA. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron. 2007; 22:1131-1137.
  • [20]Schirhagl R. Bioapplications for molecularly imprinted polymers. Anal Chem. 2014; 86:250-261.
  • [21]Poma A, Turner APF, Piletsky SA. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol. 2010; 28:629-637.
  • [22]Cennamo N, Donà A, Pallavicini P, D’Agostino G, Dacarro G, Zeni L et al.. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens Actuat B Chem. 2015; 208:291-298.
  • [23]Drechsler U, Erdogan B, Rotello VM. Nanoparticles: Scaffolds for molecular recognition. Chem Eur J. 2004; 10:5570-5579.
  • [24]Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte AC. Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrAC. 2013; 47:27-36.
  • [25]Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S et al.. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal Chem. 2009; 81:3576-3584.
  • [26]Berti F, Marrazza G, Mascini M, Todros S, Baratto C, Ferroni M et al.. One-dimensional polyaniline nanotubes for enhanced chemical and biochemical sensing. LNEE. 2011; 91:311-315.
  • [27]Fuchs Y, Soppera O, Haupt K. Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—a review. Anal Chim Acta. 2012; 717:7-20.
  • [28]Elmlund L, Suriyanarayanan S, Wiklander JG, Aastrup T, Nicholls IA. Biotin selective polymer nano-films. J Nanobiotechnol. 2014; 12:8. BioMed Central Full Text
  • [29]Xu WZ, Zhou W, Xu PP, Pan JM, Wu XY, Yan YS. A molecularly imprinted polymer based on TiO 2 as a sacrificial support for selective recognition of dibenzothiophene. Chem Eng J. 2011; 172:191-198.
  • [30]Pérez-Moral N, Mayes AG. Comparative study of imprinted polymer particles prepared by different polymerisation methods. Anal Chim Acta. 2004; 504:15-21.
  • [31]Gonzato C, Courty M, Pasetto P, Haupt K. Magnetic molecularly imprinted polymer nanocomposites via surface-initiated RAFT polymerization. Adv Funct Mater. 2011; 21:3947-3953.
  • [32]Hoshino Y, Kodama T, Okahatam Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2008; 130:15242-15243.
  • [33]Cutivet A, Schembri C, Kovensky J, Haupt K. Molecularly imprinted microgels as enzyme inhibitors. J Am Chem Soc. 2009; 131:14699-14702.
  • [34]Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P et al.. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001; 276:7811-7819.
  • [35]Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM et al.. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306:2090-2093.
  • [36]Piperno A, Mariani R, Trombini P, Girelli D. Hepcidin modulation in human diseases: from research to clinic. World J Gastroenterol. 2009; 15:538-551.
  • [37]Ganz T. Systemic iron homeostasis. Physiol Rev. 2013; 93:1721-1741.
  • [38]Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD et al.. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica. 2010; 95:505-508.
  • [39]Castagna A, Campostrini N, Zaninotto F, Girelli D. Hepcidin assay in serum by SELDI–TOF–MS and other approaches. J Proteom. 2010; 73:527-536.
  • [40]Galesloot TE, Vermeulen SH, Geurts-Moespot AJ, Klaver SM, Kroot JJ, Van Tienoven D et al.. Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood. 2011; 117:e218-e225.
  • [41]Zhang P, Yang LN, Wang G, Li FE, Tang F. Serum hepcidin level and its clinical significance in maintenance hemodialysis patients. Genet Mol Res. 2014; 13:9883-9888.
  • [42]Yang LN, Zhang P, Tang F, Wang G, Li FE. Correlation between hepcidin level and renal anemia. Genet Mol Res. 2014; 13:7407-7410.
  • [43]Pasricha SR, Atkinson SH, Armitage AE, Khandwala S, Veenemans J, Cox SE et al.. Expression of the iron hormone hepcidin distinguishes different types of Anemia in African children. Sci Transl Med. 2014; 6:235re3.
  • [44]Valenti L, Messa P, Pelusi S, Campostrini N, Girelli D. Hepcidin levels in chronic hemodialysis patients: a critical evaluation. Clin Chem Lab Med. 2014; 52:613-619.
  • [45]Maisetta G, Petruzzelli R, Brancatisano FL, Esin S, Vitali A, Campa M et al.. Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: effect of copper and acidic pH. Peptides. 2010; 31:1995-2002.
  • [46]Laarakkers CM, Wiegerinck ET, Klaver S, Kolodziejczyk M, Gille H, Hohlbaum AM et al.. Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform. PLoS One. 2013; 8:e75518.
  • [47]Rochat B, Peduzzi D, McMullen J, Favre A, Kottelat E, Favrat B et al.. Validation of hepcidin quantification in plasma using LC-HRMS and discovery of a new hepcidin isoform. Bioanalysis. 2013; 5:2509-2520.
  • [48]Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002; 277:37597-37603.
  • [49]Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V et al.. Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem. 2009; 284:24155-24167.
  • [50]Grebenchtchikov N, Geurts-Moespot AJ, Kroot JJC, Den Heijer M, Tjalsma H, Swinkels DW et al.. High-sensitive radioimmunoassay for human serum hepcidin. Br J Haematol. 2009; 146:317-325.
  • [51]Butterfield AM, Luan P, Witcher DR, Manetta J, Murphy AT, Wroblewski VJ et al.. A dual-monoclonal sandwich ELISA specific for hepcidin-25. Clin Chem. 2010; 56:1725-1732.
  • [52]Swinkels DW, Girelli D, Laarakkers C, Kroot J, Campostrini N, Kemna EH et al.. Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry. PLoS One. 2008; 3:e2706.
  • [53]Crockett DK, Kushnir MM, Phillips JD, Rockwood AL. Time-of-flight mass spectrometry analysis of the ferroportin-hepcidin binding domain complex for accurate mass confirmation of bioactive hepcidin 25. Clin Chim Acta. 2010; 411:453-455.
  • [54]Konz T, Montes-Bayón M, Vaulont S. Hepcidin quantification: methods and utility in diagnosis. Metallomics. 2014; 6:1583-1590.
  • [55]Kroot JJ, Kemna EH, Bansal SS, Busbridge M, Campostrini N, Girelli D et al.. Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: need for standardization. Haematologica. 2009; 94:1748-1752.
  • [56]Abbate V, Frascione N, Bansal SS. Preparation, characterization and binding profile of molecularly imprinted hydrogels for the peptide hepcidin. J Polym Sci A Polym Chem. 2010; 48:1721-1731.
  • [57]Rachkov A, Minoura N. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J Chromatogr A. 2000; 889:111-118.
  • [58]Titirici MM, Sellergren B. Peptide recognition via hierarchical imprinting. Anal Bioanal Chem. 2004; 378:1913-1921.
  • [59]Bossi AM, Sharma PS, Montana L, Zoccatelli G, Laub O, Levi R. Fingerprint-imprinted polymer: rational selection of peptide epitope templates for the determination of proteins by molecularly imprinted polymers. Anal Chem. 2012; 84:4036-4041.
  • [60]Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003; 101:2461-2463.
  • [61]Bossi A, Andreoli M, Bonini F, Piletsky S. ‘Gate effect’ in templated polyacrylamide membranes influences the electrotransport of proteins and finds applications in proteome analysis. Anal Bioanal Chem. 2007; 389:447-454.
  • [62]Guerreiro AR, Chianella I, Piletska E, Whitcombe MJ, Piletsky SA. Selection of imprinted nanoparticles by affinity chromatography. Biosens Bioelectron. 2009; 24:2740-2743.
  • [63]Ivanova-Mitseva PK, Guerreiro A, Piletska EV, Whitcombe MJ, Zhou Z, Mitsev PA et al.. Cubic molecularly imprinted polymer nanoparticles with a fluorescent core. Angew Chem Int Edit. 2012; 51:5196-5199.
  • [64]Golker K, Karlsson BCG, Rosengren AM, Nicholls IA. A functional monomer is not enough: principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology. Int J Mol Sci. 2014; 15:20572-20584.
  • [65]Baggiani C, Giovannoli C, Anfossi L, Passini C, Baravalle P, Giraudi G. A connection between the binding properties of imprinted and nonimprinted polymers: a change of perspective in molecular imprinting. J Am Chem Soc. 2012; 134:1513-1518.
  • [66]Lee SH, Hoshino Y, Randall A, Zeng Z, Baldi P, Doong RA et al.. Engineered synthetic polymer nanoparticles as IgG affinity ligands. J Am Chem Soc. 2012; 134:15765-15772.
  • [67]Homola J. Surface plasmon resonance sensors for detection of chemical and biological specie. Chem Rev. 2008; 108:462-493.
  • [68]Yola ML, Atar N, Eren T. Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sens Actuat B Chem. 2014; 198:70-76.
  • [69]Tan Y, Jing L, Ding Y, Wei T. A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media. Appl Surface Sci. 2015; 342:84-91.
  • [70]Guihen E. Nanoparticles in modern separation science. TrAC. 2013; 46:1-14.
  • [71]Tokareva I, Tokarev I, Minko S, Hutter E, Fendler JH. Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. Chem Commun. 2006; 21:3343-3345.
  • [72]Abdin MJ, Altintas Z, Tothill IE. In silico designed nanoMIP based optical sensor for endotoxins monitoring. Biosens Bioelectron. 2015; 67:177-183.
  • [73]Zhang Q, Jing L, Zhang J, Ren Y, Wang Y, Wang Y et al.. Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film. Anal Biochem. 2014; 463:7-14.
  • [74]Scarano S, Vestri A, Ermini ML, Minunni M. SPR detection of human Hepcidin-25: a critical approach by immuno- and biomimetic-based biosensing. Biosens Bioelectron. 2013; 40:135-140.
  • [75]Konz T, Alonso-García J, Montes-Bayón M, Sanz-Medel A. Comparison of copper labeling followed by liquid chromatography-inductively coupled plasma mass spectrometry and immunochemical assays for serum hepcidin-25 determination. Anal Chim Acta. 2013; 799:1-7.
  • [76]Lane JS, Richens JL, Vere KA, O’Shea P. Rational targeting of subclasses of intermolecular interactions: elimination of nonspecific binding for analyte sensing. Langmuir. 2014; 30:9457-9465.
  • [77]Lavine BK, Westover DJ, Kaval N, Mirjankar N, Oxenford L, Mwangi GK. Swellable molecularly imprinted polyN-(N-propyl)acrylamide particles for detection of emerging organic contaminants using surface plasmon resonance spectroscopy. Talanta. 2007; 72(3):1042-1048.
  • [78]Frasconi M, Tel-Vered R, Riskin M, Willner I. Electrified selective “Sponges” made of Au nanoparticles. J Am Chem Soc. 2010; 132:9373-9382.
  • [79]Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K et al.. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal Chem. 2005; 77:4282-4285.
  • [80]Kates SA, Albericio F. Solid-phase synthesis: a practical guide. CRC Press, New York; 2000.
  • [81]Gao J, Hu Z. Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir. 2002; 18:1360-1367.
  • [82]Gao J, Frisken BJ. Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir. 2003; 19:5212-5216.
  • [83]Kretschmann E, Reather H. Radiative decay of nonradiative surface plasmon excited by light. Z Naturf. 1968; 23A:2135-2136.
  文献评价指标  
  下载次数:65次 浏览次数:7次