| BMC Veterinary Research | |
| Effect of glucocorticoids on expression of cutaneous antimicrobial peptides in northern leopard frogs (Lithobates pipiens) | |
| Jeff L. Caswell2  Mary Ellen Clark2  Ian K. Barker2  Claire Jardine2  Ray Lu1  Louise A. Rollins-Smith3  Laetitia Tatiersky2  | |
| [1] Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, ON, Canada;Department of Pathobiology, University of Guelph, Guelph N1G 2W1, ON, Canada;Department of Biological Sciences, Vanderbilt University, Nashville 37232, TN, USA | |
| 关键词: Quantitative RT-PCR; Corticosteroid; Frogs; Skin; Antimicrobial peptides; Chytridiomycosis; | |
| Others : 1224381 DOI : 10.1186/s12917-015-0506-6 |
|
| received in 2014-10-10, accepted in 2015-07-24, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Many species of frogs secrete cutaneous antimicrobial peptides that are capable of killing Batrachochytrium dendrobatidis. Some of these species are nonetheless susceptible to chytridiomycosis, suggesting that host factors causing dysregulation of this innate immune response may be important in pathogenesis. Since stresses, such as from environmental perturbations, are a potential cause of such dysregulation, this study investigated the effect of glucocorticoid on cutaneous gene expression of these antimicrobial peptides.
Results
Northern leopard frogs (Lithobates pipiens) were injected with either the corticosteroid methylprednisolone or saline every 48 h. Norepinephrine-elicited cutaneous secretions were collected every 8 days for 40 days. Gene expression of antimicrobial peptides (brevinin-1P and ranatuerin-2P) in the cutaneous secretions was measured relative to the reference genes EF1-α and RPL8 using quantitative RT-PCR. Corticosteroid treatment was associated with a significant increase in brevinin-1P gene expression, which was most notable at 24–40 days of corticosteroid administration. Ranatuerin-2P expression followed a similar but non-significant trend.
Conclusion
This treatment protocol, including corticosteroid-administration and frequent norepinephrine-induced secretion, increased AMP gene expression in the skin of L. pipiens under these experimental conditions. The findings do not support the hypothesis that environmental stress predisposes frogs to chytridiomycosis by causing glucocorticoid-induced suppression of antimicrobial peptide defences.
【 授权许可】
2015 Tatiersky et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150909110454305.pdf | 2281KB | ||
| Fig. 2. | 13KB | Image | |
| Fig. 1. | 38KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
【 参考文献 】
- [1]Fisher MC, Garner TW, Walker SF. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol. 2009; 63:291-310.
- [2]Pereira PL, Torres AM, Soares DF, Hijosa-Valsero M, Becares E. Chytridiomycosis: a global threat to amphibians. Rev Sci Tech. 2013; 32(3):857-867.
- [3]Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci U S A. 1998; 95(15):9031-9036.
- [4]Longcore JE, Pessier AP, Nichols DK. Batrachochytrium dendrobatidis gen. et sp. nov, a chytrid pathogenic to amphibians. Mycologia. 1999; 91:219-227.
- [5]Lips KR, Diffendorfer J, Mendelson JR, Sears MW. Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 2008; 6(3): Article ID e72
- [6]Berger L, Speare R, Hines HB, Marantelli G, Hyatt AD, McDonald KR, Skerratt LF, Olsen V, Clarke JM, Gillespie G, Mahony M, Sheppard N, Williams C, Tyler MJ. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust Vet J. 2004; 82(7):434-439.
- [7]Richards-Zawacki CL. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc Biol Sci. 2010; 277(1681):519-528.
- [8]Rollins-Smith LA. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta. 2009; 1788(8):1593-1599.
- [9]Simmaco M, Boman A, Mangoni ML, Mignogna G, Miele R, Barra D, Boman HG. Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skin. FEBS Lett. 1997; 416(3):273-275.
- [10]Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol. 2011; 51(4):552-562.
- [11]Mitchell GB, Al-Haddawi MH, Clark ME, Beveridge JD, Caswell JL. Effect of corticosteroids and neuropeptides on the expression of defensins in bovine tracheal epithelial cells. Infect Immun. 2007; 75(3):1325-1334.
- [12]Woodhams DC, Bell SC, Kenyon N, Alford RA, Rollins-Smith LA. Immune evasion or avoidance: fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata. Fungal Biol. 2012; 116(12):1203-1211.
- [13]Woodhams DC, Bigler L, Marschang R. Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses. BMC Vet Res. 2012; 8:197-6148-8-197. BioMed Central Full Text
- [14]Longo AV, Ossiboff RJ, Zamudio KR, Burrowes PA. Lability in host defenses: terrestrial frogs die from chytridiomycosis under enzootic conditions. J Wildl Dis. 2013; 49(1):197-199.
- [15]Voordouw MJ, Adama D, Houston B, Govindarajulu P, Robinson J. Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs, Rana pipiens. BMC Ecol. 2010; 10:6-6785-10-6. BioMed Central Full Text
- [16]Goraya J, Wang Y, Li Z, O’Flaherty M, Knoop FC, Platz JE, Conlon JM. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem. 2000; 267(3):894-900.
- [17]Tennessen JA, Woodhams DC, Chaurand P, Reinert LK, Billheimer D, Shyr Y, Caprioli RM, Blouin MS, Rollins-Smith LA. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol. 2009; 33(12):1247-1257.
- [18]Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A, Bruzgal JE, Conlon JM. Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol. 2002; 26(5):471-479.
- [19]Pask JD, Cary TL, Rollins-Smith LA. Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis. J Exp Biol. 2013; 216(Pt 15):2908-2916.
- [20]Konig T, Schuberth HJ, Leibold W, Zerbe H. Dexamethasone depresses the expression of L-selectin but not the in vivo migration of bovine neutrophils into the uterus. Theriogenology. 2006; 65(7):1227-1241.
- [21]Martin-Ezquerra G, Man MQ, Hupe M, Rodriguez-Martin M, Youm JK, Trullas C, Mackenzie DS, Radek KA, Holleran WM, Elias PM. Psychological stress regulates antimicrobial peptide expression by both glucocorticoid and beta-adrenergic mechanisms. Eur J Dermatol. 2011; 21 Suppl 2:48-51.
- [22]Schleimer RP. Glucocorticoids suppress inflammation but spare innate immune responses in airway epithelium. Proc Am Thorac Soc. 2004; 1(3):222-230.
- [23]Searle CL, Belden LK, Du P, Blaustein AR. Stress and chytridiomycosis: exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen. J Exp Zool A Ecol Genet Physiol. 2014; 321(5):243-253.
- [24]Holmes C, Balls M. In vitro studies on the control of myoepithelial cell contraction in the granular glands of Xenopus laevis skin. Gen Comp Endocrinol. 1978; 36(2):255-263.
- [25]Chen T, Zhou M, Chen W, Lorimer J, Rao P, Walker B, Shaw C. Cloning from tissue surrogates: antimicrobial peptide (esculentin) cDNAs from the defensive skin secretions of Chinese ranid frogs. Genomics. 2006; 87(5):638-644.
- [26]Crespi EJ, Vaudry H, Denver RJ. Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis. J Neuroendocrinol. 2004; 16(3):279-288.
- [27]Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, Kashiwagi A, Shinkai T, Santo N, Iguchi T. Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquat Toxicol. 2008; 87(4):215-226.
PDF