期刊论文详细信息
Journal of Neuroinflammation
Oral administration of the KATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis
Marco Pugliese1  Nicole Mahy1  Manuel J Rodríguez1  Javier Gimeno-Bayon1  Andrea Pastén-Zamorano2  Pilar Mancera2  Juan F Espinosa-Parrilla2  Noemí Virgili2 
[1] Unitat de Bioquímica i Biologia Molecular, Departament de Ciències Fisiològiques I, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), c/Casanova 143, 08036 Barcelona, Spain;Neurotec Pharma SL, Bioincubadora PCB-Santander, Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
关键词: neuroprotection;    multiple sclerosis;    microglia;    KATP channel;    experimental autoimmune encephalomyelitis;    Diazoxide;   
Others  :  1213033
DOI  :  10.1186/1742-2094-8-149
 received in 2011-08-05, accepted in 2011-11-02,  发布年份 2011
PDF
【 摘 要 】

Background

Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS.

Methods

Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNγ)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration.

Results

Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord.

Conclusion

Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.

【 授权许可】

   
2011 Virgili et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614113358494.pdf 970KB PDF download
Figure 8. 88KB Image download
Figure 7. 84KB Image download
Figure 6. 81KB Image download
Figure 5. 168KB Image download
Figure 4. 50KB Image download
Figure 3. 133KB Image download
Figure 2. 53KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Lassmann H: Multiple sclerosis: is there neurodegeneration independent from inflammation? J Neurol Sci 2007, 259:3-6.
  • [2]Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8:57-69.
  • [3]Ransohoff RM, Perry VH: Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009, 27:119-145.
  • [4]Wulff H, Zhorov BS: K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 2008, 108:1744-1773.
  • [5]Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG: Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 2000, 275:37137-37149.
  • [6]Wulff H, Pennington M: Targeting effector memory T-cells with Kv1.3 blockers. Curr Opin Drug Discov Devel 2007, 10:438-445.
  • [7]Bittner S, Bobak N, Herrmann AM, Gobel K, Meuth P, Hohn KG, Stenner MP, Budde T, Wiendl H, Meuth SG: Upregulation of K2P5.1 potassium channels in multiple sclerosis. Ann Neurol 2010, 68:58-69.
  • [8]Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J: Association and stoichiometry of K(ATP) channel subunits. Neuron 1997, 18:827-838.
  • [9]Brayden JE: Functional roles of KATP channels in vascular smooth muscle. Clin Exp Pharmacol Physiol 2002, 29:312-316.
  • [10]Ashcroft FM: K(ATP) channels and insulin secretion: a key role in health and disease. Biochem Soc Trans 2006, 34:243-246.
  • [11]Nichols CG: KATP channels as molecular sensors of cellular metabolism. Nature 2006, 440:470-476.
  • [12]Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F: Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 2008, 60:1471-1477.
  • [13]Xie J, Duan L, Qian X, Huang X, Ding J, Hu G: K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res 2010, 88:428-437.
  • [14]Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B: Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 1999, 514(Pt 2):327-341.
  • [15]Levin BE, Dunn-Meynell AA, Routh VH: Brain glucosensing and the KATP channel. Nat Neurosci 2001, 4:459-460.
  • [16]Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J: K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 2005, 8:1742-1751.
  • [17]Ramonet D, Rodríguez MJ, Pugliese M, Mahy N: Putative glucosensing property in rat and human activated microglia. Neurobiol Dis 2004, 17:1-9.
  • [18]Goodman Y, Mattson MP: K+ channel openers protect hippocampal neurons against oxidative injury and amyloid beta-peptide toxicity. Brain Res 1996, 706:328-332.
  • [19]Roseborough G, Gao D, Chen L, Trush MA, Zhou S, Williams GM, Wei C: The mitochondrial K-ATP channel opener, diazoxide, prevents ischemia-reperfusion injury in the rabbit spinal cord. Am J Pathol 2006, 168:1443-1451.
  • [20]Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G: Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 2008, 12:1559-1570.
  • [21]Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G: Postconditioning in focal cerebral ischemia: Role of the mitochondrial ATP-dependent potassium channel. Brain Res 2011, 1375:137-146.
  • [22]Ashcroft FM, Gribble FM: New windows on the mechanism of action of K(ATP) channel openers. Trends Pharmacol Sci 2000, 21:439-445.
  • [23]Bergsten P, Gylfe E, Wesslen N, Hellman B: Diazoxide unmasks glucose inhibition of insulin release by counteracting entry of Ca2+. Am J Physiol 1988, 255:E422-E427.
  • [24]Petit P, Loubatieres-Mariani MM: Potassium channels of the insulin-secreting B cell. Fundam Clin Pharmacol 1992, 6:123-134.
  • [25]Warter A, Gillet B, Weryha A, Hagbe P, Simler M: Hypoglycemia due to insulinoma complicated with hepatic metastases. Excellent results after 20 months of treatment with diazoxide. Ann Med Interne (Paris) 1970, 121:927-934.
  • [26]Koch-Weser J: Diazoxide. N Engl J Med 1976, 294:1271-1273.
  • [27]Hanley PJ, Mickel M, Löffler M, Brandt U, Daut J: K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 2002, 542:735-41.
  • [28]Minners J, Lacerda L, Yellon DM, Opie LH, McLeod CJ, Sack MN: Diazoxide-induced respiratory inhibition - a putative mitochondrial K(ATP) channel independent mechanism of pharmacological preconditioning. Mol Cell Biochem 2007, 294:11-8.
  • [29]Saura J, Tusell JM, Serratosa J: High-yield isolation of murine microglia by mild trypsinization. Glia 2003, 44:183-189.
  • [30]Holmuhamedov EL, Jahangir A, Oberlin A, Komarov A, Colombini M, Terzic A: Potassium channel openers are uncoupling protonophores: implication in cardioprotection. FEBS Lett 2004, 568:167-170.
  • [31]Noma A: ATP-regulated K+ channels in cardiac muscle. Nature 1983, 305:147-148.
  • [32]Thomzig A, Laube G, Pruss H, Veh RW: Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 2005, 484:313-330.
  • [33]Fogal B, McClaskey C, Yan S, Yan H, Rivkees SA: Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination. PLoS One 2010, 5:e10906.
  • [34]Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y, Ding JH, Hu G: The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett 2006, 394:131-135.
  • [35]Bal-Price A, Brown GC: Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 2001, 21:6480-91.
  • [36]Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R: Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 2010, 7:30. BioMed Central Full Text
  • [37]Hill KE, Zollinger LV, Watt HE, Carlson NG, Rose JW: Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J Neuroimmunol 2004, 151:171-179.
  • [38]Tran EH, Hardin-Pouzet H, Verge G, Owens T: Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis. J Neuroimmunol 1997, 74:121-129.
  • [39]Fisher J, Mizrahi T, Schori H, Yoles E, Levkovitch-Verbin H, Haggiag S, Revel M, Schwartz M: Increased post-traumatic survival of neurons in IL-6-knockout mice on a background of EAE susceptibility. J Neuroimmunol 2001, 119:1-9.
  • [40]Quintana A, Muller M, Frausto RF, Ramos R, Getts DR, Sanz E, Hofer MJ, Krauthausen M, King NJ, Hidalgo J, Campbell IL: Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol 2009, 183:2079-2088.
  • [41]Taupin V, Renno T, Bourbonniere L, Peterson AC, Rodriguez M, Owens T: Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur J Immunol 1997, 27:905-913.
  • [42]Korner H, Lemckert FA, Chaudhri G, Etteldorf S, Sedgwick JD: Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system. Eur J Immunol 1997, 27:1973-1981.
  • [43]Brambilla R, Ashbaugh JJ, Magliozzi R, Dellarole A, Karmally S, Szymkowski DE, Bethea JR: Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain 2011, 134:2736-2754.
  • [44]Saha RN, Pahan K: Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 2006, 8:929-947.
  • [45]Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN: Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006, 38:1654-1661.
  • [46]Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H: TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 2007, 4:e124.
  • [47]Bogie JF, Stinissen P, Hellings N, Hendriks JJ: Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflammation 2011, 8:85. BioMed Central Full Text
  • [48]Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M: Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006, 31:149-160.
  • [49]Doring A, Yong VW: The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair. Front Biosci (Schol Ed) 2011, 3:846-856.
  • [50]Tokuhara N, Namiki K, Uesugi M, Miyamoto C, Ohgoh M, Ido K, Yoshinaga T, Yamauchi T, Kuromitsu J, Kimura S, Miyamoto N, Kasuya Y: N-type calcium channel in the pathogenesis of experimental autoimmune encephalomyelitis. J Biol Chem 2010, 285:33294-33306.
  • [51]Gadjanski I, Boretius S, Williams SK, Lingor P, Knoferle J, Sattler MB, Fairless R, Hochmeister S, Suhs KW, Michaelis T, Frahm J, Storch MK, Bahr M, Diem R: Role of n-type voltage-dependent calcium channels in autoimmune optic neuritis. Ann Neurol 2009, 66:81-93.
  • [52]Sun XL, Zeng XN, Zhou F, Dai CP, Ding JH, Hu G: KATP channel openers facilitate glutamate uptake by GluTs in rat primary cultured astrocytes. Neuropsychopharmacology 2008, 33:1336-1342.
  • [53]Zhang S, Liang R, Zhou F, Huang X, Ding JH, Hu G: Reversal of rotenone-induced dysfunction of astrocytic connexin43 by opening mitochondrial ATP-sensitive potassium channels. Cell Mol Neurobiol 2011, 31:111-117.
  • [54]Ben Ari Y, Krnjevic K, Crepel V: Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience 1990, 37:55-60.
  • [55]Nagy K, Kis B, Rajapakse NC, Bari F, Busija DW: Diazoxide preconditioning protects against neuronal cell death by attenuation of oxidative stress upon glutamate stimulation. J Neurosci Res 2004, 76:697-704.
  • [56]Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA: EpsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res 2007, 1184:345-353.
  • [57]Wang L, Zhu QL, Wang GZ, Deng TZ, Chen R, Liu MH, Wang SW: The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia-ischemia-reperfusion in brain. Neurosci Lett 2011, 491:63-67.
  • [58]Liu D, Pitta M, Lee JH, Ray B, Lahiri DK, Furukawa K, Mughal M, Jiang H, Villarreal J, Cutler RG, Greig NH, Mattson MP: The KATP channel activator diazoxide ameliorates amyloid-beta and tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer's disease. J Alzheimers Dis 2010, 22:443-457.
  • [59]Bertolino M, Baraldi M, Parenti C, Braghiroli D, DiBella M, Vicini S, Costa E: Modulation of AMPA/kainate receptors by analogues of diazoxide and cyclothiazide in thin slices of rat hippocampus. Receptor Channels 1993, 1:267-78.
  • [60]Ammala C, Moorhouse A, Gribble F, Ashfield R, Proks P, Smith PA, Sakura H, Coles B, Ashcroft SJ, Ashcroft FM: Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature 1996, 379:545-548.
  • [61]Chen M, Dong Y, Simard JM: Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 2003, 23:8568-8577.
  • [62]Gold R, Linington C, Lassmann H: Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006, 129:1953-71.
  • [63]Juedes AE, Ruddle NH: Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 2001, 166:5168-5175.
  • [64]Korner H, Riminton DS, Strickland DH, Lemckert FA, Pollard JD, Sedgwick JD: Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med 1997, 186:1585-1590.
  文献评价指标  
  下载次数:13次 浏览次数:10次