期刊论文详细信息
Trials
Examining the impact of genetic testing for type 2 diabetes on health behaviors: study protocol for a randomized controlled trial
William S Yancy6  Geoffrey S Ginsburg5  M Patrick Gallagher7  Margarete Sandelowski1  Maren Scheuner4  Francoise Blanpain2  Jamiyla McKenzie7  Alex Cho5  Azita Sadeghpour7  Janet M Grubber7  Matthew L Maciejewski6  David Edelman6  Cynthia J Coffman8  Corrine I Voils3 
[1] School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;Clinical Molecular Diagnostics Laboratory, Duke University Medical Center, Durham, NC, USA;Veterans Affairs Medical Center (152), 508 Fulton St., Durham, NC, 27705, USA;Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA;Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, NC, USA;Department of Medicine, Duke University Medical Center, Durham, NC, USA;Center for Health Services Research in Primary Care, Durham Veterans Affairs Medical Center, Durham, NC, USA;Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
关键词: Weight loss;    Type II diabetes;    Genetic testing;   
Others  :  1095439
DOI  :  10.1186/1745-6215-13-121
 received in 2012-03-23, accepted in 2012-07-18,  发布年份 2012
PDF
【 摘 要 】

Background

We describe the study design, procedures, and development of the risk counseling protocol used in a randomized controlled trial to evaluate the impact of genetic testing for diabetes mellitus (DM) on psychological, health behavior, and clinical outcomes.

Methods/Design

Eligible patients are aged 21 to 65 years with body mass index (BMI) ≥27 kg/m2 and no prior diagnosis of DM. At baseline, conventional DM risk factors are assessed, and blood is drawn for possible genetic testing. Participants are randomized to receive conventional risk counseling for DM with eye disease counseling or with genetic test results. The counseling protocol was pilot tested to identify an acceptable graphical format for conveying risk estimates and match the length of the eye disease to genetic counseling. Risk estimates are presented with a vertical bar graph denoting risk level with colors and descriptors. After receiving either genetic counseling regarding risk for DM or control counseling on eye disease, brief lifestyle counseling for prevention of DM is provided to all participants.

Discussion

A standardized risk counseling protocol is being used in a randomized trial of 600 participants. Results of this trial will inform policy about whether risk counseling should include genetic counseling.

Trial registration

ClinicalTrials.gov Identifier NCT01060540

【 授权许可】

   
2012 Voils et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150130184358215.pdf 684KB PDF download
Figure 2. 64KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Bloss CS, Schork NJ, Topol EJ: Effect of direct-to-consumer genomewide profiling to assess disease risk. N Engl J Med 2011, 364:524-534.
  • [2]Mountcastle-Shah E, Holtzman NA: Primary care physicians’ perceptions of barriers to genetic testing and their willingness to participate in research. Am J Med Gen 2000, 94:409-416.
  • [3]Adriaanse MC, Snoek FJ, Dekker JM, Spijkerman AM, Nijpels G, van der Ploeg HM, Heine RJ: Perceived risk for Type 2 diabetes in participants in a stepwise population-screening programme. Diabet Med 2003, 20:210-215.
  • [4]Wee H-L, Cheung Y-B, Li S-C, Fong K-Y, Thumboo J: The impact of diabetes mellitus and other chronic medical conditions on health-related Quality of Life: Is the whole greater than the sum of its parts? Health Qual Life Outcomes 2005, 3:2. BioMed Central Full Text
  • [5]Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L: Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008, 359:2220-2232.
  • [6]Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D: TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006, 355:241-250.
  • [7]Callahan CM, Unverzagt FW, Hui SL, Perkins AJ, Hendrie HC: Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care 2002, 40:771-781.
  • [8]Fagerlin A, Zikmund-Fisher BJ, Ubel PA, Jankovic A, Derry HA, Smith DM: Measuring numeracy without a math test: Development of the Subjective Numeracy Scale. Med Decis Making 2007, 27:672-680.
  • [9]Chang M-, Valdez R, Ned RM, Liu T, Yang Q, Yesupriya A, Dowling NF, Meigs JB, Bowen MS, Khoury MJ: Influence of familial risk on diabetes risk–reducing behaviors among U.S. adults without diabetes. Diabetes Care 2011.
  • [10]Weedon MN, McCarthy MI, Hitman G, Walker M, Groves CJ, Zeggini E, Rayner NW, Shields B, Owen KR, Hattersley AT, Frayling TM: Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med 2006, 3:e374.
  • [11]Weinstein N: What does it mean to understand a risk? Evaluation risk comprehension. J Natl Cancer Inst Monogr 1999, 25:15-20.
  • [12]Hsee CK: The evaluability hypothesis: An explanation for preference reversals between joint and separate evaluations of alternatives. Organ Behav Hum 1996, 67:247-257.
  • [13]Hsee CK: Less is better: When low-value options are valued more highly than high-value options. J Behav Decis Making 1998, 11:107-121.
  • [14]Nelson W, Reyna VF, Fagerlin A, Lipkus I, Peters E: Clinical implications of numeracy: Theory and practice. Ann Behav Med 2008, 35:261-274.
  • [15]Narayan KM, Boyle JP, Thompson TJ, Gregg EW, Williamson DF: Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care 2007, 30:1562-1566.
  • [16]Hariri S, Yoon P, Qureshi N, Valdez R, Scheuner M, Khoury M: Family history of type 2 diabetes: A population-based screening tool for prevention? Genet Med 2006, 8:102-108.
  • [17]Nichols GA, Hillier TA, Brown JB: Progression from newly acquired impaired fasting glusose to type 2 diabetes. Diabetes Care 2007, 30:228-233.
  • [18]Hill S, Spink J, Cadilhac D, Edwards A, Kaufman C, Rogers S, Ryan R, Tonkin A: Absolute risk representation in cardiovascular disease prevention: comprehension and preferences of health care consumers and general practitioners involved in a focus group study. BMC Public Health 2010, 10:108. BioMed Central Full Text
  • [19]Tay J, Brinkworth GD, Noakes M, Keogh J, Clifton PM: Metabolic effects of weight loss on a very-low-carbohydrate diet compared with an isocaloric high-carbohydrate diet in abdominally obese subjects. J Am Coll Cardiol 2008, 51:59-67.
  • [20]Gregg EW, Cheng YJ, Narayan KM, Thompson TJ, Williamson DF: The relative contributions of different levels of overweight and obesity to the increased prevalence of diabetes in the United States: 1976–2004. Prev Med 2007, 45:348-352.
  • [21]Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, Hoskin M, Kriska AM, Mayer-Davis EJ, Pi-Sunyer X, et al.: Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 2006, 29:2102-2107.
  • [22]Broadbent E, Petrie KJ, Main J, Weinman J: The Brief Illness Perception questionnaire. J Psychosom Res 2006, 60:631-637.
  • [23]Cancer Prevention Research Center Measures. http://www.uri.edu/research/cprc/measures.htm webcite
  • [24]McCann BS, Bovbjerg VE, Brief DJ, Turner C, Follette WC, Fitzpatrick V, Dowdy A, Retzlaff B, Walden CE, Knopp RH: Relationship of self-efficacy to cholesterol lowering and dietary change in hyperlipidemia. Ann Beh Med 1995, 17:221-226.
  • [25]Resnick B, Jenkins LS: Testing the reliability and validity of the Self-Efficacy for Exercise scale. Nurs Res 2000, 49:154-159.
  • [26]Cella D, Hughes C, Peterman A, Chang CH, Peshkin BN, Schwartz MD, Wenzel L, Lemke A, Marcus AC, Lerman C: A brief assessment of concerns associated with genetic testing for cancer: The Multidimensional Impact of Cancer Risk Assessment (MICRA) questionnaire. Health Psychol 2002, 21:564-572.
  • [27]Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P: International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003, 35:1381-1395.
  • [28]Group IEEW: ICH harmonised tripartite guideline - statistical principles for clinical trials. Stat Med 1999, 18:1905-1942.
  • [29]Verbeke G, Molenbergh G: Linear mixed models for longitudinal data. Springer, New York; 2000.
  • [30]Schafer J: Analysis of incomplete multivariate data. Chapman & Hall, London; 1997.
  • [31]Borm G, Fransen J, Lemmens W: A simple sample size formula for analysis of covariance in randomized clinical trials. J Clin Epidemiol 2007, 60:1234-1238.
  • [32]Yancy W, Westman E, McDuffie J, Grambow S, Jeffreys A, Bolton J, Chalecki A, Oddone EZ: A randomized trial of a low-carbohydrate, ketogenic diet versus orlistat plus a low-fat diet for weight loss. Arch Int Med 2010, 170:136-145.
  • [33]Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, Uusitupa M, Tuomilehto J: The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003, 26:3230-3236.
  • [34]Garrison L, Mansley E, Abbott T, Bresnahan B, Hay J, Smeeding J: Good research practices for measuring drug costs in cost-effectiveness analyses: A societal perspective: The ISPOR Drug Cost Task Force Report-Part II. Value Health 2010, 13:8-13.
  • [35]Bloss CS, Madlensky L, Schork NJ, Topol EJ: Genomic information as a behavioral health intervention: Can it work? Per Med 2011, 8:659-667.
  • [36]Bloss CS, Darst BF, Topol EJ, Schork NJ: Direct-to-consumer personalized genomic testing. Hum Mol Genet 2011, 20:R132-R141.
  文献评价指标  
  下载次数:14次 浏览次数:29次