期刊论文详细信息
BMC Veterinary Research
Characterization of vascular endothelial progenitor cells from chicken bone marrow
Yuehui Ma1  Weijun Guan1  Yabin Pu1  Minghai Zhang3  Lingling Hou2  Chunyu Bai3 
[1] Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China;College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China;College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
关键词: Isolation;    Endothelial progenitor cells;    Biological characteristics;    Chicken;   
Others  :  1119833
DOI  :  10.1186/1746-6148-8-54
 received in 2011-10-04, accepted in 2012-05-14,  发布年份 2012
PDF
【 摘 要 】

Background

Endothelial progenitor cells (EPC) are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR.

Results

We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P) 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro.

Conclusions

These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

【 授权许可】

   
2012 Bai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150208132339751.pdf 2365KB PDF download
Figure 8. 81KB Image download
Figure 7. 19KB Image download
Figure 6. 92KB Image download
Figure 5. 47KB Image download
Figure 4. 113KB Image download
Figure 3. 137KB Image download
Figure 2. 108KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275(5302):964-967.
  • [2]Spadaccio C, Pollari F, Casacalenda A, Alfano G, Genovese J, Covino E, Chello M: Atorvastatin increases the number of endothelial progenitor cells after cardiac surgery: a randomized control study. J Cardiovasc Pharmacol 2010, 55(1):30-38.
  • [3]Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD: Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 2003, 93(11):1023-1025.
  • [4]Bonello L, Basire A, Sabatier F, Paganelli F, Dignat-George F: Endothelial injury induced by coronary angioplasty triggers mobilization of endothelial progenitor cells in patients with stable coronary artery disease. J Thromb Haemost 2006, 4(5):979-981.
  • [5]George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelstein A, Herz I, Miller H, Keren G: Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J 2004, 25(12):1003-1008.
  • [6]Kawamura A, Horie T, Tsuda I, Abe Y, Yamada M, Egawa H, Iida J, Sakata H, Onodera K, Tamaki T, et al.: Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs 2006, 9(4):226-233.
  • [7]Rotmans JI, Heyligers JM, Stroes ES, Pasterkamp G: Endothelial progenitor cell-seeded grafts: rash and risky. Can J Cardiol 2006, 22(13):1113-1116.
  • [8]De Falco E, Avitabile D, Totta P, Straino S, Spallotta F, Cencioni C, Torella AR, Rizzi R, Porcelli D, Zacheo A, et al.: Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. J Cell Mol Med 2009, 13(9B):3405-3414.
  • [9]Chen J, Song M, Yu S, Gao P, Yu Y, Wang H, Huang L: Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol Cell Biochem 2010, 335(1-2):137-146.
  • [10]Heida NM, Muller JP, Cheng IF, Leifheit-Nestler M, Faustin V, Riggert J, Hasenfuss G, Konstantinides S, Schafer K: Effects of obesity and weight loss on the functional properties of early outgrowth endothelial progenitor cells. J Am Coll Cardiol 2010, 55(4):357-367.
  • [11]Liu X, Li Y, Liu Y, Luo Y, Wang D, Annex BH, Goldschmidt-Clermont PJ: Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy. Am J Pathol 2010, 176(1):504-515.
  • [12]Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V: Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008, 319(5860):195-198.
  • [13]Roodhart JM, Langenberg MH, Vermaat JS, Lolkema MP, Baars A, Giles RH, Witteveen EO, Voest EE: Late release of circulating endothelial cells and endothelial progenitor cells after chemotherapy predicts response and survival in cancer patients. Neoplasia 2010, 12(1):87-94.
  • [14]Bai C, Li C, Jin D, Guo Y, Guan W, Ma Y, Zhao Q: Establishment and characterization of a fibroblast line from landrace. Artif Cells Blood Substit Immobil Biotechnol 2010, 38(3):129-135.
  • [15]Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L: Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 2002, 99(4):2199-2204.
  • [16]Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000, 97(7):3422-3427.
  • [17]Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001, 89(1):E1-E7.
  • [18]Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T: Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999, 5(4):434-438.
  • [19]Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, Waltenberger J, Beltinger C: Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 2003, 58(2):478-486.
  • [20]Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG: Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001, 49(3):671-680.
  • [21]Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, et al.: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000, 95(3):952-958.
  • [22]Wagner DD, Olmsted JB, Marder VJ: Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 1982, 95(1):355-360.
  • [23]Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S: Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003, 102(4):1340-1346.
  • [24]Rehman J, Li J, Orschell CM, March KL: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003, 107(8):1164-1169.
  文献评价指标  
  下载次数:27次 浏览次数:5次