期刊论文详细信息
BMC Evolutionary Biology
Evolution of specifier proteins in glucosinolate-containing plants
Ute Wittstock1  Meike Burow2  Jennifer C Kuchernig1 
[1] Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, D-38106 Braunschweig, Germany;DynaMo Centre of Excellence and VKR Research Centre for Pro-Active Plants, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
关键词: Secondary metabolism;    Phylogenetic analysis;    Chemical diversity;    Glucosinolate breakdown;    Specifier proteins;   
Others  :  1140771
DOI  :  10.1186/1471-2148-12-127
 received in 2012-03-23, accepted in 2012-07-11,  发布年份 2012
PDF
【 摘 要 】

Background

The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinases get mixed and glucosinolates are broken down to an array of biologically active compounds of which isothiocyanates are toxic to a wide range of organisms. Specifier proteins occur in some, but not all glucosinolate-containing plants and promote the formation of biologically active non-isothiocyanate products upon myrosinase-catalyzed glucosinolate breakdown.

Results

Based on a phytochemical screening among representatives of the Brassicales order, we selected candidate species for identification of specifier protein cDNAs. We identified ten specifier proteins from a range of species of the Brassicaceae and assigned each of them to one of the three specifier protein types (NSP, nitrile-specifier protein, ESP, epithiospecifier protein, TFP, thiocyanate-forming protein) after heterologous expression in Escherichia coli. Together with nine known specifier proteins and three putative specifier proteins found in databases, we subjected the newly identified specifier proteins to phylogenetic analyses. Specifier proteins formed three major clusters, named AtNSP5-cluster, AtNSP1-cluster, and ESP/TFP cluster. Within the ESP/TFP cluster, specifier proteins grouped according to the Brassicaceae lineage they were identified from. Non-synonymous vs. synonymous substitution rate ratios suggested purifying selection to act on specifier protein genes.

Conclusions

Among specifier proteins, NSPs represent the ancestral activity. The data support a monophyletic origin of ESPs from NSPs. The split between NSPs and ESPs/TFPs happened before the radiation of the core Brassicaceae. Future analyses have to show if TFP activity evolved from ESPs at least twice independently in different Brassicaceae lineages as suggested by the phylogeny. The ability to form non-isothiocyanate products by specifier protein activity may provide plants with a selective advantage. The evolution of specifier proteins in the Brassicaceae demonstrates the plasticity of secondary metabolism within an activated plant defense system.

【 授权许可】

   
2012 Kuchernig et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325105157967.pdf 715KB PDF download
Figure 3. 40KB Image download
Figure 2. 41KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Hartmann T: From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry 2007, 68:2831-2846.
  • [2]Kroymann J: Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 2011, 14:246-251.
  • [3]Reimann A, Nurhayati N, Backenköhler A, Ober D: Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 2004, 16:2772-2784.
  • [4]Ober D: Seeing double: Gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 2005, 10:444-449.
  • [5]Kliebenstein DJ, Kroymann J, Mitchell-Olds T: The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 2005, 8:264-271.
  • [6]Tholl D: Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 2006, 9:297-304.
  • [7]Keeling CI, Weisshaar S, Lin RPC, Bohlmann J: Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci USA 2008, 105:1085-1089.
  • [8]Bidart-Bouzat MG, Kliebenstein DJ: Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Arabidopsis thaliana. J Chem Ecol 2008, 34:1026-1037.
  • [9]Benderoth M, Pfalz M, Kroymann J: Methylthioalkylmalate synthases: Genetics, ecology and evolution. Phytochemistry Rev 2009, 8:255-268.
  • [10]Burow M, Halkier BA, Kliebenstein DJ: Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness. Curr Opin Plant Biol 2010, 13:348-353.
  • [11]Mithen R, Bennett R, Marquez J: Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 2010, 71:2074-2086.
  • [12]Fahey JW, Zalcmann AT, Talalay P: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56:5-51.
  • [13]Halkier BA, Gershenzon J: Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 2006, 57:303-333.
  • [14]Hopkins RJ, van Dam NM, Van Loon JJA: Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 2009, 54:57-83.
  • [15]Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J: Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 2000, 42:93-113.
  • [16]Andréasson E, Jørgensen LB: Localization of plant myrosinases and glucosinolates. In Integrative Phytochemistry: From Ethnobotany to Molecular Ecology. Edited by Romeo JT. Amsterdam: Elsevier; 2003:79-99.
  • [17]Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y: Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J 2011, 67:81-93.
  • [18]Traka M, Mithen R: Glucosinolates, isothiocyanates and human health. Phytochemistry Rev 2009, 8:269-282.
  • [19]Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gershenzon J, Kroymann J: Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci USA 2006, 103:9118-9123.
  • [20]Burow M, Bergner A, Gershenzon J, Wittstock U: Glucosinolate hydrolysis in Lepidium sativum - Identification of the thiocyanate-forming protein. Plant Mol Biol 2007, 63:49-61.
  • [21]Tookey HL: Crambe thioglucoside glucohydrolase (EC 3.2.3.1): separation of a protein required for epithiobutane formation. Can J Biochem 1973, 51:1654-1660.
  • [22]Chew FS: Biological effects of glucosinolates. In Biologically active natural products. Edited by Cutler HG. Washington DC: American Chemical Society; 1988:155-181.
  • [23]Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J: The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 2001, 13:2793-2807.
  • [24]Zhang Z, Ober JA, Kliebenstein DJ: The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 2006, 18:1524-1536.
  • [25]Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J: Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In Integrative Phytochemistry: From Ethnobotany to Molecular Ecology. Edited by Romeo JT. Amsterdam: Elsevier; 2003:101-125.
  • [26]Wittstock U, Burow M: Tipping the scales - specifier proteins in glucosinolate hydrolysis. IUBMB Life 2007, 59:744-751.
  • [27]Wittstock U, Burow M: Glucosinolate breakdown in Arabidopsis - mechanism, regulation and biological significance. In The Arabidopsis Book (http://wwwaspborg/publications/arabidopsis/). Edited by Last R, Chang C, Jander G, Kliebenstein D, McClung R, Millar H, Torii K, Wagner D. The American Society of Plant Biologists; ; 2010.
  • [28]Matusheski NV, Swarup R, Juvik JA, Mithen R, Bennett M, Jeffery EH: Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 2006, 54:2069-2076.
  • [29]Kuchernig JC, Backenköhler A, Lübbecke M, Burow M, Wittstock U: A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Phytochemistry 2011, 72:1699-1709.
  • [30]Burow M, Losansky A, Müller R, Plock A, Kliebenstein DJ, Wittstock U: The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Plant Physiol 2009, 149:561-574.
  • [31]Adams J, Kelso R, Cooley L: The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 2000, 10:17-24.
  • [32]Nagano AJ, Fukao Y, Fujiwara M, Nishimura M, Hara-Nishimura I: Antagonistic jacalin-related lectins regulate the size of ER body-type beta-glucosidase complexes in Arabidopsis thaliana. Plant Cell Physiol 2008, 49:969-980.
  • [33]Franzke A, Lysak MA, Al-Shehbaz IA, Koch M, Mummenhoff K: Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 2011, 16:108-116.
  • [34]Kissen R, Bones AM: Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. J Biol Chem 2009, 284:12057-12070.
  • [35]Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A, Totoki Y, Toyoda A, Sakaki Y, Seki M, Ono H, Sakata Y, Tanaka S, Shinozaki K: Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte. Thellungiella halophila. BMC Plant Biol 2008, 8:115. BioMed Central Full Text
  • [36]Lüthy J, Benn MH: Thiocyanate formation from glucosinolates: a study of the autolysis of allylglucosinolate in Thlaspi arvense L. seed flour extracts. Can J Biochem 1977, 55:1028-1031.
  • [37]Rossiter JT, Pickett JA, Bennett MH, Bones AM, Powell G, Cobb J: The synthesis and enzymic hydrolysis of (E)-2-[2,3-2 H2]propenyl glucosinolate: Confirmation of the rearrangement of the thiohydroximate moiety. Phytochemistry 2007, 68:1384-1390.
  • [38]Brocker ER, Benn MH: The intramolecular formation of epithioalkanenitriles from alkenylglucosinolates by Crambe abyssinica seed flour. Phytochemistry 1983, 22:770-772.
  • [39]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance and Maximum Parsimony Methods. Mol Biol Evol 2011, 28:2731-2739.
  • [40]Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S: Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 2010, 107:18724-18728.
  • [41]Franzke A, German D, Al-Shehbaz IA, Mummenhoff K: Arabidopsis family ties: Molecular phylogeny and age estimates in Brassicaceae. Taxon 2009, 58:425-427.
  • [42]De Bodt S, Maere S, Van de Peer Y: Genome duplication and the origin of angiosperms. Trends Ecol Evol 2005, 20:591-597.
  • [43]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17:32-43.
  • [44]Burow M, Markert J, Gershenzon J, Wittstock U: Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS Journal 2006, 273:2432-2446.
  • [45]Mumm R, Burow M, Bukovinszkine'Kiss G, Kazantzidou E, Wittstock U, Dicke M, Gershenzon J: Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J Chem Ecol 2008, 34:1311-1321.
  • [46]De Vos M, Kriksunov KL, Jander G: Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae (white cabbage butterfly). Plant Physiol 2008, 146:916-926.
  • [47]Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T: The genetic basis of a plant-insect coevolutionary key innovation. Proc Natl Acad Sci USA 2007, 104:20427-20431.
  • [48]Thies W: Isolation of sinigrin and glucotropaeolin from cruciferous seeds. FETT Wissenschaft Technologie-Fat Science Technology 1988, 90:311-314.
  • [49]Burow M, Müller R, Gershenzon J, Wittstock U: Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J Chem Ecol 2006, 32:2333-2349.
  • [50]Nour-Eldin HH, Hansen BG, Nørholm MH, Jensen JK, Halkier BA: Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 2006, 25:25.
  文献评价指标  
  下载次数:12次 浏览次数:22次