期刊论文详细信息
BMC Microbiology
Mycobacterium tuberculosis expressing phospholipase C subverts PGE2 synthesis and induces necrosis in alveolar macrophages
Lúcia H Faccioli3  Célio L Silva2  Sylvia C Leão1  Priscilla AT Pereira3  Wendy M Rios2  Francisco WG Paula-Silva3  Milena S Espíndola2  Patricia A Assis2 
[1]Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
[2]Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
[3]Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Cafe, s/n, Ribeirão Preto, SP 14040-903, Brazil
关键词: Prostaglandins;    Macrophage necrosis;    Cell death;    Phospholipase C;    Lipid mediator;    Mycobacterium;   
Others  :  1141045
DOI  :  10.1186/1471-2180-14-128
 received in 2013-11-15, accepted in 2014-05-06,  发布年份 2014
PDF
【 摘 要 】

Background

Phospholipases C (PLCs) are virulence factors found in several bacteria. In Mycobacterium tuberculosis (Mtb) they exhibit cytotoxic effects on macrophages, but the mechanisms involved in PLC-induced cell death are not fully understood. It has been reported that induction of cell necrosis by virulent Mtb is coordinated by subversion of PGE2, an essential factor in cell membrane protection.

Results

Using two Mtb clinical isolates carrying genetic variations in PLC genes, we show that the isolate 97-1505, which bears plcA and plcB genes, is more resistant to alveolar macrophage microbicidal activity than the isolate 97-1200, which has all PLC genes deleted. The isolate 97-1505 also induced higher rates of alveolar macrophage necrosis, and likewise inhibited COX-2 expression and PGE2 production. To address the direct effect of mycobacterial PLC on cell necrosis and PGE2 inhibition, both isolates were treated with PLC inhibitors prior to macrophage infection. Interestingly, inhibition of PLCs affected the ability of the isolate 97-1505 to induce necrosis, leading to cell death rates similar to those induced by the isolate 97-1200. Finally, PGE2 production by Mtb 97-1505-infected macrophages was restored to levels similar to those produced by 97-1200-infected cells.

Conclusions

Mycobacterium tuberculosis bearing PLCs genes induces alveolar macrophage necrosis, which is associated to subversion of PGE2 production.

【 授权许可】

   
2014 Assis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325194359201.pdf 554KB PDF download
Figure 5. 61KB Image download
Figure 4. 43KB Image download
Figure 3. 63KB Image download
Figure 2. 82KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Songer JG: Bacterial phospholipases and their role in virulence. Trends Microbiol 1997, 5(4):156-161.
  • [2]Titball RW: Bacterial phospholipases C. Microbiol Rev 1993, 57(2):347-366.
  • [3]McNamara PJ, Bradley GA, Songer JG: Targeted mutagenesis of the phospholipase D gene results in decreased virulence of Corynebacterium pseudotuberculosis. Mol Microbiol 1994, 12(6):921-930.
  • [4]Camilli A, Goldfine H, Portnoy DA: Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J Exp Med 1991, 173(3):751-754.
  • [5]Terada LS, Johansen KA, Nowbar S, Vasil AI, Vasil ML: Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun 1999, 67(5):2371-2376.
  • [6]Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, Smith I, Gicquel B, Jackson M: Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 2002, 45(1):203-217.
  • [7]Bakala N'goma JC, Schue M, Carriere F, Geerlof A, Canaan S: Evidence for the cytotoxic effects of Mycobacterium tuberculosis phospholipase C towards macrophages. Biochim Biophys Acta 2010, 1801(12):1305-1313.
  • [8]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rdz, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393(6685):537-544.
  • [9]Camus JC, Pryor MJ, Medigue C, Cole ST: Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 2002, 148(Pt 10):2967-2973.
  • [10]Viana-Niero C, de Haas PE, van Soolingen D, Leao SC: Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology 2004, 150(Pt 4):967-978.
  • [11]Monturiol-Gross L, Flores-Diaz M, Pineda-Padilla MJ, Castro-Castro AC, Alape-Giron A: Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NFkappaB activation. PLoS One 2014, 9(1):e86475.
  • [12]Behar SM, Divangahi M, Remold HG: Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 2010, 8(9):668-674.
  • [13]Chen M, Divangahi M, Gan H, Shin DS, Hong S, Lee DM, Serhan CN, Behar SM, Remold HG: Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J Exp Med 2008, 205(12):2791-2801.
  • [14]Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG: Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 2009, 10(8):899-906.
  • [15]Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM: Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 2010, 11(8):751-758.
  • [16]Peres CM, de Paula L, Medeiros AI, Sorgi CA, Soares EG, Carlos D, Peters-Golden M, Silva CL, Faccioli LH: Inhibition of leukotriene biosynthesis abrogates the host control of Mycobacterium tuberculosis. Microbes Infect 2007, 9(4):483-489.
  • [17]Peres-Buzalaf C, de Paula L, Frantz FG, Soares EM, Medeiros AI, Peters-Golden M, Silva CL, Faccioli LH: Control of experimental pulmonary tuberculosis depends more on immunostimulatory leukotrienes than on the absence of immunosuppressive prostaglandins. Prostaglandins Leukot Essent Fatty Acids 2011, 85(2):75-81.
  • [18]van Crevel R, Ottenhoff TH, van der Meer JW: Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 2002, 15(2):294-309.
  • [19]Rao KM: MAP kinase activation in macrophages. J Leukoc Biol 2001, 69(1):3-10.
  • [20]Schorey JS, Cooper AM: Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cell Microbiol 2003, 5(3):133-142.
  • [21]Cuschieri J, Billgren J, Maier RV: Phosphatidylcholine-specific phospholipase C (PC-PLC) is required for LPS-mediated macrophage activation through CD14. J Leukoc Biol 2006, 80(2):407-414.
  • [22]Serezani CH, Aronoff DM, Jancar S, Mancuso P, Peters-Golden M: Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood 2005, 106(3):1067-1075.
  • [23]Peracino B, Balest A, Bozzaro S: Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 2010, 123(Pt 23):4039-4051.
  • [24]Chayakulkeeree M, Sorrell TC, Siafakas AR, Wilson CF, Pantarat N, Gerik KJ, Boadle R, Djordjevic JT: Role and mechanism of phosphatidylinositol-specific phospholipase C in survival and virulence of Cryptococcus neoformans. Mol Microbiol 2008, 69(4):809-826.
  • [25]Minnaard J, Rolny IS, Perez PF: Interaction between Bacillus cereus and cultured human enterocytes: effect of calcium, cell differentiation, and bacterial extracellular factors. J Food Prot 2013, 76(5):820-826.
  • [26]Ramakrishnan L: Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 2012, 12(5):352-366.
  • [27]Gil DP, Leon LG, Correa LI, Maya JR, Paris SC, Garcia LF, Rojas M: Differential induction of apoptosis and necrosis in monocytes from patients with tuberculosis and healthy control subjects. J Infect Dis 2004, 189(11):2120-2128.
  • [28]Fink SL, Bergsbaken T, Cookson BT: Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A 2008, 105(11):4312-4317.
  • [29]Amer AO: Modulation of caspases and their non-apoptotic functions by Legionella pneumophila. Cell Microbiol 2010, 12(2):140-147.
  • [30]Perfettini JL, Hospital V, Stahl L, Jungas T, Verbeke P, Ojcius DM: Cell death and inflammation during infection with the obligate intracellular pathogen, Chlamydia. Biochimie 2003, 85(8):763-769.
  • [31]Behar SM, Martin CJ, Nunes-Alves C, Divangahi M, Remold HG: Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 2011, 13(8–9):749-756.
  • [32]Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, Sasakawa C: Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 2011, 195(6):931-942.
  • [33]Sun J, Singh V, Lau A, Stokes RW, Obregon-Henao A, Orme IM, Wong D, Av-Gay Y, Hmama Z: Mycobacterium tuberculosis Nucleoside Diphosphate Kinase Inactivates Small GTPases Leading to Evasion of Innate Immunity. PLoS Pathog 2013, 9(7):e1003499.
  • [34]Festjens N, Vanden Berghe T, Vandenabeele P: Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 2006, 1757(9–10):1371-1387.
  • [35]Rodrigues MF, Alves CC, Figueiredo BB, Rezende AB, Wohlres-Viana S, Silva VL, Machado MA, Teixeira HC: Tumor necrosis factor receptors and apoptosis of alveolar macrophages during early infection with attenuated and virulent Mycobacterium bovis. Immunology 2013, 139(4):503-12.
  • [36]Kwuan L, Adams W, Auerbuch V: Impact of Host Membrane Pore Formation by the Yersinia pseudotuberculosis Type III Secretion System on the Macrophage Innate Immune Response. Infect Immun 2013, 81(3):905-914.
  • [37]Radmark O, Samuelsson B: 5-Lipoxygenase: mechanisms of regulation. J Lipid Res 2009, 50(Suppl):S40-45.
  • [38]Monick MM, Carter AB, Gudmundsson G, Mallampalli R, Powers LS, Hunninghake GW: A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 1999, 162(5):3005-3012.
  • [39]Goldfine H, Wadsworth SJ: Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect 2002, 4(13):1335-1343.
  • [40]Bafica A, Scanga CA, Serhan C, Machado F, White S, Sher A, Aliberti J: Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J Clin Invest 2005, 115(6):1601-1606.
  • [41]Tobin DM, May RC, Wheeler RT: Zebrafish: a see-through host and a fluorescent toolbox to probe host-pathogen interaction. PLoS Pathog 2012, 8(1):e1002349.
  • [42]Brock TG, McNish RW, Mancuso P, Coffey MJ, Peters-Golden M: Prolonged lipopolysaccharide inhibits leukotriene synthesis in peritoneal macrophages: mediation by nitric oxide and prostaglandins. Prostag Other Lipid Mediat 2003, 71(3–4):131-145.
  • [43]McDonough KA, Kress Y: Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun 1995, 63(12):4802-4811.
  • [44]Johansen KA, Gill RE, Vasil ML: Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun 1996, 64(8):3259-3266.
  • [45]Peters-Golden M, McNish RW, Hyzy R, Shelly C, Toews GB: Alterations in the pattern of arachidonate metabolism accompany rat macrophage differentiation in the lung. J Immunol 1990, 144(1):263-270.
  • [46]Page B, Page M, Noel C: A new fluorometric assay for cytotoxicity measurements in-vitro. Int J Oncol 1993, 3(3):473-476.
  文献评价指标  
  下载次数:149次 浏览次数:25次