期刊论文详细信息
BMC Cancer
Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment
Marlies E Heuvers2  Joachim G Aerts3  Robin Cornelissen2  Harry Groen1  Henk C Hoogsteden2  Joost P Hegmans2 
[1] Department of Pulmonary Medicine, University Medical Centrum Groningen, Groningen, The Netherlands
[2] Department of Pulmonary Medicine, Erasmus Medical Center, Postbox 2040, 3000 CA, Rotterdam, The Netherlands
[3] Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
关键词: Cancer immunology;    Personalized medicine;    Immune system;    Tumor microenvironment;    Lung cancer;   
Others  :  1080034
DOI  :  10.1186/1471-2407-12-580
 received in 2012-08-17, accepted in 2012-11-15,  发布年份 2012
PDF
【 摘 要 】

Cancer research has devoted most of its energy over the past decades on unraveling the control mechanisms within tumor cells that govern its behavior. From this we know that the onset of cancer is the result of cumulative genetic mutations and epigenetic alterations in tumor cells leading to an unregulated cell cycle, unlimited replicative potential and the possibility for tissue invasion and metastasis. Until recently it was often thought that tumors are more or less undetected or tolerated by the patient’s immune system causing the neoplastic cells to divide and spread without resistance. However, it is without any doubt that the tumor environment contains a wide variety of recruited host immune cells. These tumor infiltrating immune cells influence anti-tumor responses in opposing ways and emerges as a critical regulator of tumor growth. Here we provide a summary of the relevant immunological cell types and their complex and dynamic roles within an established tumor microenvironment. For this, we focus on both the systemic compartment as well as the local presence within the tumor microenvironment of late-stage non-small cell lung cancer (NSCLC), admitting that this multifaceted cellular composition will be different from earlier stages of the disease, between NSCLC patients. Understanding the paradoxical role that the immune system plays in cancer and increasing options for their modulation may alter the odds in favor of a more effective anti-tumor immune response. We predict that the future standard of care of lung cancer will involve patient-tailor-made combination therapies that associate (traditional) chemotherapeutic drugs and biologicals with immune modulating agents and in this way complement the therapeutic armamentarium for this disease.

【 授权许可】

   
2012 Heuvers et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202221526379.pdf 620KB PDF download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL: 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 2011, 60:319-326.
  • [2]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
  • [3]Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009, 30:1073-1081.
  • [4]Zitvogel L, Kepp O, Aymeric L, Ma Y, Locher C, Delahaye NF, et al.: Integration of host-related signatures with cancer cell-derived predictors for the optimal management of anticancer chemotherapy. Cancer Res 2010, 70:9538-9543.
  • [5]Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, et al.: T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res 2009, 11:R15. BioMed Central Full Text
  • [6]Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al.: The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 2008, 68:5405-5413.
  • [7]Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, DeLisi C, et al.: High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res 2007, 67:10669-10676.
  • [8]Becknell B, Caligiuri MA: Natural killer cells in innate immunity and cancer. J Immunother 2008, 31:685-692.
  • [9]Caligiuri MA: Human natural killer cells. Blood 2008, 112:461-469.
  • [10]Al-Shibli K, Al-Saad S, Donnem T, Persson M, Bremnes RM, Busund LT: The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology 2009, 55:301-312.
  • [11]Yang Q, Goding SR, Hokland ME, Basse PH: Antitumor activity of NK cells. Immunol Res 2006, 36:13-25.
  • [12]Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, et al.: Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol 2012, 188:2583-2591.
  • [13]Sodeur S, Ullrich S, Gustke H, Zangemeister-Wittke U, Schumacher U: Increased numbers of spontaneous SCLC metastasis in absence of NK cells after subcutaneous inoculation of different SCLC cell lines into pfp/rag2 double knock out mice. Cancer Lett 2009, 282:146-151.
  • [14]Al Omar SY, Marshall E, Middleton D, Christmas SE: Increased killer immunoglobulin-like receptor expression and functional defects in natural killer cells in lung cancer. Immunology 2011, 133:94-104.
  • [15]Cremer I, Fridman WH, Sautes-Fridman C: Tumor microenvironment in NSCLC suppresses NK cells function. Oncoimmunology 2012, 1:244-246.
  • [16]Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, et al.: A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 2010, 59:1781-1789.
  • [17]Shimizu T, Takahashi N, Terakado M, Tsujino I, Hashimoto S: Activation of Valpha24NKT cells in malignant pleural effusion in patients with lung cancer. Oncol Rep 2009, 22:581-586.
  • [18]Rijavec M, Volarevic S, Osolnik K, Kosnik M, Korosec P: Natural killer T cells in pulmonary disorders. Respir Med 2011, 105(Suppl 1):S20-S25.
  • [19]Molling JW, Kolgen W, van der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH, et al.: Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer 2005, 116:87-93.
  • [20]Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, et al.: Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 2001, 167:4046-4050.
  • [21]Dhodapkar MV, Richter J: Harnessing natural killer T (NKT) cells in human myeloma: progress and challenges. Clin Immunol 2011, 140:160-166.
  • [22]Wu L, Van Kaer L: Natural killer T cells in health and disease. Front Biosci (Schol Ed) 2011, 3:236-251.
  • [23]Motohashi S, Nakayama T: Natural killer T cell-mediated immunotherapy for malignant diseases. Front Biosci (Schol Ed) 2009, 1:108-116.
  • [24]O’Callaghan DS, O'Donnell D, O’Connell F, O’Byrne KJ: The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol 2010, 5:2024-2036.
  • [25]Dundar E, Oner U, Peker BC, Metintas M, Isiksoy S, Ak G: The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J Int Med Res 2008, 36:88-95.
  • [26]Stoyanov E, Uddin M, Mankuta D, Dubinett SM, Levi-Schaffer F: Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer 2012, 75:38-44.
  • [27]Al-Shibli K, Al-Saad S, Andersen S, Donnem T, Bremnes RM, Busund LT: The prognostic value of intraepithelial and stromal CD3-, CD117- and CD138-positive cells in non-small cell lung carcinoma. APMIS 2010, 118:371-382.
  • [28]Imada A, Shijubo N, Kojima H, Abe S: Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 2000, 15:1087-1093.
  • [29]Niczyporuk M, Hermanowicz A, Matuszczak E, Dziadziuszko R, Knas M, Zalewska A, et al.: A lack of correlation between mast cells, angiogenesis, and outcome in non-small cell lung cancer. Exp Lung Res 2012, 38:281-285.
  • [30]Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, et al.: The significant role of mast cells in cancer. Cancer Metastasis Rev 2011, 30:45-60.
  • [31]Heijmans J, Buller NV, Muncan V, van den Brink GR: Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta 2012, 1822:9-13.
  • [32]Nechushtan H: The complexity of the complicity of mast cells in cancer. Int J Biochem Cell Biol 2010, 42:551-554.
  • [33]Groot Kormelink T, Abudukelimu A, Redegeld FA: Mast cells as target in cancer therapy. Curr Pharm Des 2009, 15:1868-1878.
  • [34]Sarraf KM, Belcher E, Raevsky E, Nicholson AG, Goldstraw P, Lim E: Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J Thorac Cardiovasc Surg 2009, 137:425-428.
  • [35]Teramukai S, Kitano T, Kishida Y, Kawahara M, Kubota K, Komuta K, et al.: Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer 2009, 45:1950-1958.
  • [36]Tomita M, Shimizu T, Ayabe T, Yonei A, Onitsuka T: Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Res 2011, 31:2995-2998.
  • [37]Mantovani A: The yin-yang of tumor-associated neutrophils. Cancer Cell 2009, 16:173-174.
  • [38]Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al.: Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 2012, 109:2491-2496.
  • [39]Soehnlein O: An elegant defense: how neutrophils shape the immune response. Trends Immunol 2009, 30:511-512.
  • [40]Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M, et al.: B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 2012, 13:170-180.
  • [41]Yang D, de la Rosa G, Tewary P, Oppenheim JJ: Alarmins link neutrophils and dendritic cells. Trends Immunol 2009, 30:531-537.
  • [42]Ilie M, Hofman V, Ortholan C, Bonnetaud C, Coelle C, Mouroux J, et al.: Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer 2012, 118:1726-1737.
  • [43]Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al.: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16:183-194.
  • [44]Gottlin EB, Bentley RC, Campa MJ, Pisetsky DS, Herndon JE 2nd, Patz EF Jr: The Association of Intratumoral Germinal Centers with early-stage non-small cell lung cancer. J Thorac Oncol 2011, 6:1687-1690.
  • [45]Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE: Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg 2001, 44:180-188.
  • [46]Kazarian M, Laird-Offringa IA: Small-cell lung cancer-associated autoantibodies: potential applications to cancer diagnosis, early detection, and therapy. Mol Cancer 2011, 10:33. BioMed Central Full Text
  • [47]Mihn DC, Kim TY: Various autoantibodies are found in small-cell lung cancer. Lung Cancer 2009, 64:250.
  • [48]Nagashio R, Sato Y, Jiang SX, Ryuge S, Kodera Y, Maeda T, et al.: Detection of tumor-specific autoantibodies in sera of patients with lung cancer. Lung Cancer 2008, 62:364-373.
  • [49]Amornsiripanitch N, Hong S, Campa MJ, Frank MM, Gottlin EB, Patz EF Jr: Complement factor H autoantibodies are associated with early stage NSCLC. Clin Cancer Res 2010, 16:3226-3231.
  • [50]Cittera E, Leidi M, Buracchi C, Pasqualini F, Sozzani S, Vecchi A, et al.: The CCL3 family of chemokines and innate immunity cooperate in vivo in the eradication of an established lymphoma xenograft by rituximab. J Immunol 2007, 178:6616-6623.
  • [51]Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, et al.: FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 2010, 17:121-134.
  • [52]Andersen MH, Schrama D, Thor Straten P, Becker JC: Cytotoxic T cells. J Invest Dermatol 2006, 126:32-41.
  • [53]Mori M, Ohtani H, Naito Y, Sagawa M, Sato M, Fujimura S, et al.: Infiltration of CD8+ T cells in non-small cell lung cancer is associated with dedifferentiation of cancer cells, but not with prognosis. Tohoku J Exp Med 2000, 191:113-118.
  • [54]Trojan A, Urosevic M, Dummer R, Giger R, Weder W, Stahel RA: Immune activation status of CD8+ T cells infiltrating non-small cell lung cancer. Lung Cancer 2004, 44:143-147.
  • [55]Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, et al.: Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 2006, 94:275-280.
  • [56]Suzuki K, Kachala SS, Kadota K, Shen R, Mo Q, Beer DG, et al.: Prognostic Immune Markers in Non-Small Cell Lung Cancer. Clin Cancer Res 2011, 17:5247-5256.
  • [57]Wakabayashi O, Yamazaki K, Oizumi S, Hommura F, Kinoshita I, Ogura S, et al.: CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci 2003, 94:1003-1009.
  • [58]da Costa Souza P, Parra ER, Atanazio MJ, da Silva OB, Noleto GS, Ab’saber AM, et al.: Different morphology, stage and treatment affect immune cell infiltration and long-term outcome in patients with non-small-cell lung carcinoma. Histopathology 2012, 61:587-596.
  • [59]McCoy MJ, Nowak AK, van der Most RG, Dick IM, Lake RA: Peripheral CD8(+) T cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother 2012. [Epub ahead of print]
  • [60]Wherry EJ: T cell exhaustion. Nat Immunol 2011, 12:492-499.
  • [61]Kayser G, Schulte-Uentrop L, Sienel W, Werner M, Fisch P, Passlick B, et al.: Stromal CD4/CD25 positive T-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas. Lung Cancer 2012, 76:445-451.
  • [62]Ruffini E, Asioli S, Filosso PL, Lyberis P, Bruna MC, Macri L, et al.: Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg 2009, 87:365-371. discussion 71–72
  • [63]Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008, 8:299-308.
  • [64]Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P: Human T cell responses against melanoma. Annu Rev Immunol 2006, 24:175-208.
  • [65]Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006, 314:126-129.
  • [66]Fonsatti E, Maio M, Altomonte M, Hersey P: Biology and clinical applications of CD40 in cancer treatment. Semin Oncol 2010, 37:517-523.
  • [67]Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al.: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012, 366:2455-2465.
  • [68]Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al.: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 2012, 30:2046-2054.
  • [69]Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG: TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 2012, 28:615-621.
  • [70]Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998, 188:287-296.
  • [71]Hawrylowicz CM, O’Garra A: Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 2005, 5:271-283.
  • [72]Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al.: Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001, 61:4766-4772.
  • [73]Fu HY, Li C, Yang W, Gai XD, Jia T, Lei YM, et al.: FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: Implications for tumor progression and escape. Acta Histochem 2012. [Epub ahead of print]
  • [74]Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T: CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep 2005, 14:1269-1273.
  • [75]Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, et al.: Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer 2012, 77:306-311.
  • [76]Dimitrakopoulos FI, Papadaki H, Antonacopoulou AG, Kottorou A, Gotsis AD, Scopa C, et al.: Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res 2011, 31:1677-1683.
  • [77]Zaynagetdinov R, Stathopoulos GT, Sherrill TP, Cheng DS, McLoed AG, Ausborn JA, et al.: Epithelial nuclear factor-kappaB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes. Oncogene 2011, 31:3164-3176.
  • [78]Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, et al.: Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 2012, 75:95-101.
  • [79]Li H, Zhao H, Yu J, Su Y, Cao S, An X, et al.: Increased prevalence of regulatory T cells in the lung cancer microenvironment: a role of thymic stromal lymphopoietin. Cancer Immunol Immunother 2011, 60:1587-1596.
  • [80]Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, et al.: Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 2005, 65:5211-5220.
  • [81]Zou W: Regulatory T, cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006, 6:295-307.
  • [82]Byrne WL, Mills KH, Lederer JA, O’Sullivan GC: Targeting regulatory T cells in cancer. Cancer Res 2011, 71:6915-6920.
  • [83]Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G: Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003, 197:163-168.
  • [84]Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, et al.: Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 2003, 198:433-442.
  • [85]Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K: Phase I/II study of adoptive transfer of gammadelta T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother 2011, 60:1075-1084.
  • [86]Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, et al.: A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 2010, 37:1191-1197.
  • [87]Yoshida Y, Nakajima J, Wada H, Kakimi K: Gammadelta T-cell immunotherapy for lung cancer. Surg Today 2011, 41:606-611.
  • [88]Iwakura Y, Ishigame H, Saijo S, Nakae S: Functional specialization of interleukin-17 family members. Immunity 2011, 34:149-162.
  • [89]Zou W, Restifo NP: T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 2010, 10:248-256.
  • [90]Ye ZJ, Zhou Q, Gu YY, Qin SM, Ma WL, Xin JB, et al.: Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol 2010, 185:6348-6354.
  • [91]Li Y, Cao ZY, Sun B, Wang GY, Fu Z, Liu YM, et al.: Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther 2011, 12:610-616.
  • [92]Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, et al.: Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 2010, 69:348-354.
  • [93]Ankathatti Munegowda M, Deng Y, Mulligan SJ, Xiang J: Th17 and Th17-stimulated CD8(+) T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity. Cancer Immunol Immunother 2011, 60:1473-1484.
  • [94]Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, et al.: Th17 cells in cancer: help or hindrance? Carcinogenesis 2011, 32:643-649.
  • [95]Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al.: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006, 116:2777-2790.
  • [96]Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA, et al.: Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol 2008, 181:3291-3300.
  • [97]Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, et al.: Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 2011, 121:4015-4029.
  • [98]Serafini P, Mgebroff S, Noonan K, Borrello I: Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008, 68:5439-5449.
  • [99]Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al.: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009, 50:799-807.
  • [100]Li H, Han Y, Guo Q, Zhang M, Cao X: Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 2009, 182:240-249.
  • [101]Nausch N, Galani IE, Schlecker E, Cerwenka A: Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood 2008, 112:4080-4089.
  • [102]Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, et al.: Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 2008, 205:2235-2249.
  • [103]Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al.: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008, 135:234-243.
  • [104]Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, et al.: Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 2010, 70:99-108.
  • [105]Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P: MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol 2011, 11:856-861.
  • [106]Ostrand-Rosenberg S: Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 2010, 59:1593-1600.
  • [107]Youn JI, Gabrilovich DI: The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010, 40:2969-2975.
  • [108]Gabrilovich DI, Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009, 9:162-174.
  • [109]Rodriguez PC, Ochoa AC: Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 2008, 222:180-191.
  • [110]Bronte V, Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005, 5:641-654.
  • [111]Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK: Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 2012, 22:275-281.
  • [112]Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, et al.: Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2010, 136:35-45.
  • [113]Apetoh L, Vegran F, Ladoire S, Ghiringhelli F: Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr Mol Med 2011, 11:365-372.
  • [114]Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH: Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 2011, 77:12-19.
  • [115]Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, et al.: Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 2009, 9:470-481.
  • [116]Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY: The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer 2011, 131:741-751.
  • [117]Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, et al.: Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 2012, 5:205-215.
  • [118]Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P: Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res 2012, 72:1373-1383.
  • [119]Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al.: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010, 70:3052-3061.
  • [120]Poschke I, Kiessling R: On the armament and appearances of human myeloid-derived suppressor cells. Clin Immunol 2012, 144:250-268.
  • [121]Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, et al.: COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 2010, 10:464. BioMed Central Full Text
  • [122]Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al.: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006, 203:2691-2702.
  • [123]De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, et al.: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 2005, 102:4185-4190.
  • [124]Schmid MC, Varner JA: Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol 2010, 2010:201026.
  • [125]Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, et al.: The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 2011, 6:824-833.
  • [126]Lewis C, Murdoch C: Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 2005, 167:627-635.
  • [127]Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, et al.: The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer 2010, 10:220. BioMed Central Full Text
  • [128]Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, et al.: Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 2008, 113:1387-1395.
  • [129]Ma J, Liu L, Che G, Yu N, Dai F, You Z: The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 2010, 10:112. BioMed Central Full Text
  • [130]Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P: Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 2009, 33:118-126.
  • [131]Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P: Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 2005, 23:8959-8967.
  • [132]Chung FT, Lee KY, Wang CW, Heh CC, Chan YF, Chen HW, et al.: Tumor-associated macrophages correlate with response to epidermal growth factor receptor-tyrosine kinase inhibitors in advanced non-small cell lung cancer. Int J Cancer 2012, 131:E227-E235.
  • [133]Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010, 127:2893-2917.
  • [134]Nakanishi Y, Nakatsuji M, Seno H, Ishizu S, Akitake-Kawano R, Kanda K, et al.: COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 2011, 32:1333-1339.
  • [135]Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, et al.: Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 2011, 17:6083-6096.
  • [136]Terlou A, van Seters M, Kleinjan A, Heijmans-Antonissen C, Santegoets LA, Beckmann I, et al.: Imiquimod-induced clearance of HPV is associated with normalization of immune cell counts in usual type vulvar intraepithelial neoplasia. Int J Cancer 2010, 127:2831-2840.
  • [137]Heusinkveld M, van der Burg SH: Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 2011, 9:216. BioMed Central Full Text
  • [138]Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, et al.: An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. J Exp Med 2008, 205:1269-1276.
  • [139]Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al.: “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008, 205:1261-1268.
  • [140]Buhtoiarov IN, Sondel PM, Wigginton JM, Buhtoiarova TN, Yanke EM, Mahvi DA, et al.: Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology 2011, 132:226-239.
  • [141]Sautes-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, et al.: Tumor microenvironment is multifaceted. Cancer Metastasis Rev 2011, 30:13-25.
  • [142]Bremnes RM, Donnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al.: The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 2011, 6:209-217.
  • [143]Becker Y: Dendritic cell activity against primary tumors: an overview. In Vivo 1993, 7:187-191.
  • [144]Mitra R, Singh S, Khar A: Antitumour immune responses. Expert Rev Mol Med 2003, 5:1-19.
  • [145]Kusmartsev S, Gabrilovich DI: Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 2006, 25:323-331.
  • [146]Pinzon-Charry A, Maxwell T, Lopez JA: Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 2005, 83:451-461.
  • [147]Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, et al.: Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 2006, 25:333-356.
  • [148]Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, et al.: Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000, 6:1755-1766.
  • [149]Bergeron A, El-Hage F, Kambouchner M, Lecossier D, Tazi A: Characterisation of dendritic cell subsets in lung cancer micro-environments. Eur Respir J 2006, 28:1170-1177.
  • [150]Gabrilovich D: Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004, 4:941-952.
  • [151]Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al.: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996, 2:1096-1103.
  • [152]Laxmanan S, Robertson SW, Wang E, Lau JS, Briscoe DM, Mukhopadhyay D: Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun 2005, 334:193-198.
  • [153]Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, et al.: Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998, 92:4778-4791.
  • [154]Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH: Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997, 159:4772-4780.
  • [155]Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 2009, 182:2795-2807.
  • [156]Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S, et al.: Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol 2011, 6:1162-1168.
  • [157]Mu CY, Huang JA, Chen Y, Chen C, Zhang XG: High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 2011, 28:682-688.
  • [158]Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 1997, 3:483-490.
  • [159]Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, et al.: Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 2002, 100:230-237.
  • [160]Kvistborg P, Bechmann CM, Pedersen AW, Toh HC, Claesson MH, Zocca MB: Comparison of monocyte-derived dendritic cells from colorectal cancer patients, non-small-cell-lung-cancer patients and healthy donors. Vaccine 2009, 28:542-547.
  • [161]Perroud MW Jr, Honma HN, Barbeiro AS, Gilli SC, Almeida MT, Vassallo J, et al.: Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study. J Exp Clin Cancer Res 2011, 30:65. BioMed Central Full Text
  • [162]Wang K, Zhou Q, Guo AL, Xu CR, An SJ, Wu YL: An autologous therapeutic dendritic cell vaccine transfected with total lung carcinoma RNA stimulates cytotoxic T lymphocyte responses against non-small cell lung cancer. Immunol Invest 2009, 38:665-680.
  • [163]Zhou Q, Guo AL, Xu CR, An SJ, Wang Z, Yang SQ, et al.: A dendritic cell-based tumour vaccine for lung cancer: full-length XAGE-1b protein-pulsed dendritic cells induce specific cytotoxic T lymphocytes in vitro. Clin Exp Immunol 2008, 153:392-400.
  • [164]Galluzzi L, Senovilla L, Zitvogel L, Kroemer G: The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012, 11:215-233.
  • [165]Hannani D, Sistigu A, Kepp O, Galluzzi L, Kroemer G, Zitvogel L: Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. Cancer J 2011, 17:351-358.
  • [166]Zitvogel L, Kepp O, Kroemer G: Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011, 8:151-160.
  • [167]Holdenrieder S, Nagel D, Stieber P: Estimation of prognosis by circulating biomarkers in patients with non-small cell lung cancer. Cancer Biomark 2010, 6:179-190.
  • [168]Alm El-Din MA, Farouk G, Nagy H, Abd Elzaher A, Abo El-Magd GH: Cytokeratin-19 fragments, nucleosomes and neuron-specific enolase as early measures of chemotherapy response in non-small cell lung cancer. Int J Biol Markers 2012, 27:e139-e146.
  • [169]Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, et al.: Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res 2004, 10:5981-5987.
  • [170]Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A, et al.: Nucleosomes and CYFRA 21–1 indicate tumor response after one cycle of chemotherapy in recurrent non-small cell lung cancer. Lung Cancer 2009, 63:128-135.
  • [171]Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al.: Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008, 26:4410-4417.
  • [172]McCoy MJ, Lake RA, van der Most RG, Dick IM, Nowak AK: Post-chemotherapy T-cell recovery is a marker of improved survival in patients with advanced thoracic malignancies. Br J Cancer 2012, 107:1107-1115.
  • [173]Galluzzi L, Vitale I, Senovilla L, Olaussen KA, Pinna G, Eisenberg T, et al.: Prognostic impact of vitamin b6 metabolism in lung cancer. Cell Rep 2012, 2:257-269.
  • [174]Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, et al.: Circulating immunogenic cell death biomarkers HMGB1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol 2012. [Epub ahead of print]
  • [175]Fahmueller YN, Nagel D, Hoffmann RT, Tatsch K, Jakobs T, Stieber P, et al.: Immunogenic cell death biomarkers HMGB1, RAGE and DNAse indicate response to radioembolisation therapy and prognosis in colorectal cancer patients. Int J Cancer 2012. [Epub ahead of print]
  • [176]Murad YM, Clay TM: CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs 2009, 23:361-375.
  • [177]Wang YY, He XY, Cai YY, Wang ZJ, Lu SH: The variation of CD4+CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Target Oncol 2011, 6:147-154.
  • [178]Ullrich E, Bonmort M, Mignot G, Kroemer G, Zitvogel L: Tumor stress, cell death and the ensuing immune response. Cell Death Differ 2008, 15:21-28.
  • [179]Demaria S: Defining the role of the immune system in cancer treatment: highlights from the Immunochemotherapy Conference. Expert Rev Anticancer Ther 2011, 11:841-843.
  文献评价指标  
  下载次数:12次 浏览次数:12次