| BMC Evolutionary Biology | |
| Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera? | |
| Gautam Basu1  Saumya Dasgupta1  | |
| [1] Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India | |
| 关键词: Whole-genome analysis; Phylum-specificity; Gene duplication; tRNAGln; HGT; GlnRS; GluRS2; GluRS; | |
| Others : 1084868 DOI : 10.1186/1471-2148-14-26 |
|
| received in 2013-10-16, accepted in 2014-02-07, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood.
Results
A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum.
Conclusions
Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.
【 授权许可】
2014 Dasgupta and Basu; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150113164929650.pdf | 3672KB | ||
| Figure 6. | 134KB | Image | |
| Figure 5. | 125KB | Image | |
| Figure 4. | 235KB | Image | |
| Figure 3. | 125KB | Image | |
| Figure 2. | 145KB | Image | |
| Figure 1. | 87KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Breton R, Sanfaçon H, Papayannopoulos I, Biemann K, Lapointe J: Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J Biol Chem 1986, 261:10610-10617.
- [2]Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Söll D: The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 1986, 322:281-284.
- [3]Woese CR, Olsen GJ, Ibba M, Söll D: Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev Mmbr 2000, 64:202-236.
- [4]Salazar JC, Ahel I, Orellana O, Tumbula-Hansen D, Krieger R, Daniels L, Söll D: Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. Proc Natl Acad Sci USA 2003, 100:13863-13868.
- [5]Skouloubris S, de Pouplana LR, de Reuse H, Hendrickson TL: A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution. Proc Natl Acad Sci USA 2003, 100:11297-11302.
- [6]Lapointe J, Duplain L, Proulx M: A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J Bacteriol 1986, 165:88-93.
- [7]Lamour V, Quevillon S, Diriong S, N’Guyen VC, Lipinski M, Mirande M: Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc Natl Acad Sci USA 1994, 91:8670-8674.
- [8]Saha R, Dasgupta S, Basu G, Roy S: A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution. Biochem J 2009, 417:449-455.
- [9]Saha R, Dasgupta S, Banerjee R, Mitra-Bhattacharyya A, Söll D, Basu G, Roy S: A functional loop spanning distant domains of glutaminyl-tRNA synthetase also stabilizes a molten globule state. Biochemistry (Mosc) 2012, 51:4429-4437.
- [10]Nureki O, Vassylyev DG, Katayanagi K, Shimizu T, Sekine S, Kigawa T, Miyazawa T, Yokoyama S, Morikawa K: Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Science 1995, 267:1958-1965.
- [11]Grant TD, Luft JR, Wolfley JR, Snell ME, Tsuruta H, Corretore S, Quartley E, Phizicky EM, Grayhack EJ, Snell EH: The structure of yeast glutaminyl-tRNA synthetase and modeling of its interaction with tRNA. J Mol Biol 2013, 425:2480-2493.
- [12]Siatecka M, Rozek M, Barciszewski J, Mirande M: Modular evolution of the Glx-tRNA synthetase family–rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Eur J Biochem Febs 1998, 256:80-87.
- [13]Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Soll D, Ishitani R: Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Res 2010, 38:7286-7297.
- [14]Di Giulio M: Origin of glutaminyl-tRNA synthetase: an example of palimpsest? J Mol Evol 1993, 37:5-10.
- [15]Rogers KC, Söll D: Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging. J Mol Evol 1995, 40:476-481.
- [16]Brown JR, Doolittle WF: Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J Mol Evol 1999, 49:485-495.
- [17]Handy J, Doolittle RF: An attempt to pinpoint the phylogenetic introduction of glutaminyl-tRNA synthetase among bacteria. J Mol Evol 1999, 49:709-715.
- [18]Becker HD, Kern D: Thermus thermophilus: A link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci USA 1998, 95:12832-12837.
- [19]Akochy P-M, Bernard D, Roy PH, Lapointe J: Direct glutaminyl-tRNA biosynthesis and indirect asparaginyl-tRNA biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 2004, 186:767-776.
- [20]Luque I, Riera-Alberola ML, Andújar A, de Alda JAGO: Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases. Mol Biol Evol 2008, 25:2369-2389.
- [21]Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward automatic reconstruction of a highly resolved tree of life. Science 2006, 311:1283-1287.
- [22]Dasgupta S, Manna D, Basu G: Structural and functional consequences of mutating a proteobacteria-specific surface residue in the catalytic domain of Escherichia coli GluRS. Febs Lett 2012, 586:1724-1730.
- [23]Karlin S, Brocchieri L, Mrázek J, Kaiser D: Distinguishing features of delta-proteobacterial genomes. Proc Natl Acad Sci USA 2006, 103:11352-11357.
- [24]Guo LT, Helgadóttir S, Söll D, Ling J: Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor. Nucleic Acids Res 2012, 40:7967-7974.
- [25]Baldauf SL: Phylogeny for the faint of heart: a tutorial. Trends Genet Tig 2003, 19:345-351.
- [26]Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G: The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination. Febs Lett 2009, 583:2114-2120.
- [27]Dubois DY, Blais SP, Huot JL, Lapointe J: A C-truncated glutamyl-tRNA synthetase specific for tRNA(Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry (Mosc) 2009, 48:6012-6021.
- [28]Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C, Pagot F, Salomoni A, Grisel S, Vincentelli R, Bignon C, Lapointe J, Giegé R, Cambillau C: The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. J Mol Biol 2004, 337:273-283.
- [29]Blaise M, Becker HD, Lapointe J, Cambillau C, Giegé R, Kern D: Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon. Biochimie 2005, 87:847-861.
- [30]Salazar JC, Ambrogelly A, Crain PF, McCloskey JA, Söll D: A truncated aminoacyl-tRNA synthetase modifies RNA. Proc Natl Acad Sci USA 2004, 101:7536-7541.
- [31]Yanai I, Wolf YI, Koonin EV: Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 2002., 3research0024
- [32]Frenkel-Morgenstern M, Valencia A: Novel domain combinations in proteins encoded by chimeric transcripts. Bioinforma Oxf Engl 2012, 28:i67-74.
- [33]Wolf YI, Aravind L, Grishin NV, Koonin EV: Evolution of aminoacyl-tRNA synthetases–analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 1999, 9:689-710.
- [34]Eriani G, Delarue M, Poch O, Gangloff J, Moras D: Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 1990, 347:203-206.
- [35]O’Donoghue P, Luthey-Schulten Z: On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev 2003, 67:550-573.
- [36]Ito T, Kiyasu N, Matsunaga R, Takahashi S, Yokoyama S: Structure of nondiscriminating glutamyl-tRNA synthetase from Thermotoga maritima. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 7):813-820.
- [37]Deniziak M, Sauter C, Becker HD, Paulus CA, Giegé R, Kern D: Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation. Nucleic Acids Res 2007, 35:1421-1431.
- [38]Freist W, Gauss DH, Ibba M, Söll D: Glutaminyl-tRNA synthetase. Biol Chem 1997, 378:1103-1117.
- [39]White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketchum KA, Nelson KE, Salzberg S, Smith HO, et al.: Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999, 286:1571-1577.
- [40]Giegé R, Sissler M, Florentz C: Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998, 26:5017-5035.
- [41]Jahn M, Rogers MJ, Söll D: Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature 1991, 352:258-260.
- [42]Bullock TL, Uter N, Nissan TA, Perona JJ: Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J Mol Biol 2003, 328:395-408.
- [43]Auffinger P, Westhof E: Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J Mol Biol 1999, 292:467-483.
- [44]Olejniczak M, Uhlenbeck OC: tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition. Biochimie 2006, 88:943-950.
- [45]Sekine S, Nureki O, Shimada A, Vassylyev DG, Yokoyama S: Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol 2001, 8:203-206.
- [46]Lee J, Hendrickson TL: Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases. J Mol Biol 2004, 344:1167-1174.
- [47]Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto encyclopedia of genes and Genomes. Nucleic Acids Res 1999, 27:29-34.
- [48]Abe T, Ikemura T, Sugahara J, Kanai A, Ohara Y, Uehara H, Kinouchi M, Kanaya S, Yamada Y, Muto A, Inokuchi H: tRNADB-CE 2011: tRNA gene database curated manually by experts. Nucleic Acids Res 2011, 39(Database issue):D210-213.
- [49]Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J: tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 2009, 37(Database issue):D159-162.
- [50]Chan PP, Lowe TM: GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 2009, 37(Database issue):D93-97.
- [51]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 2004, 5:113. BioMed Central Full Text
- [52]Pei J, Kim BH, Grishin NV: PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 2008, 36:2295-2300.
- [53]Rould MA, Perona JJ, Söll D, Steitz TA: Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science 1989, 246:1135-1142.
- [54]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36:W465-469. Web Server issue
- [55]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
- [56]Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R: TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinforma 2006, 7:439. BioMed Central Full Text
- [57]Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 2006, 55:539-552.
- [58]Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R: Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinforma 2007, 8:460. BioMed Central Full Text
PDF