期刊论文详细信息
BMC Cancer
Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors
Sergei A Grando2  Valentin Galitovkiy1  Igor B Shchepotin3  Alex I Chernyavsky1 
[1]Department of Dermatology, University of California, 134 Sprague Hall, Irvine 92697, CA, USA
[2]Cancer Center and Research Institute, University of California, 134 Sprague Hall, Irvine 92697, CA, USA
[3]National Cancer Institute, Kiev, Ukraine
关键词: Mitochondria;    Intrinsic apoptosis;    Growth factors;    Proliferation;    Nicotinic acetylcholine receptors;    Lung cancer cells;    Bronchial epithelial cells;   
Others  :  1143812
DOI  :  10.1186/s12885-015-1158-4
 received in 2014-11-07, accepted in 2015-03-04,  发布年份 2015
PDF
【 摘 要 】

Background

One of the major controversies of contemporary medicine is created by an increased consumption of nicotine and growing evidence of its connection to cancer, which urges elucidation of the molecular mechanisms of oncogenic effects of inhaled nicotine. Current research indicates that nicotinergic regulation of cell survival and death is more complex than originally thought, because it involves signals emanating from both cell membrane (cm)- and mitochondrial (mt)-nicotinic acetylcholine receptors (nAChRs). In this study, we elaborated on the novel concept linking cm-nAChRs to growth promotion of lung cancer cells through cooperation with the growth factor signaling, and mt-nAChRs — to inhibition of intrinsic apoptosis through prevention of opening of mitochondrial permeability transition pore (mPTP).

Methods

Experiments were performed with normal human lobar bronchial epithelial cells, the lung squamous cell carcinoma line SW900, and intact and NNK-transformed immortalized human bronchial cell line BEP2D.

Results

We demonstrated that the growth-promoting effect of nicotine mediated by activation of α7 cm-nAChR synergizes mainly with that of epidermal growth factor (EGF), α3 — vascular endothelial growth factor (VEGF), α4 — insulin-like growth factor I (IGF-I) and VEGF, whereas α9 with EGF, IGF-I and VEGF. We also established the ligand-binding abilities of mt-nAChRs and demonstrated that quantity of the mt-nAChRs coupled to inhibition of mPTP opening increases upon malignant transformation.

Conclusions

These results indicated that the biological sum of simultaneous activation of cm- and mt-nAChRs produces a combination of growth-promoting and anti-apoptotic signals that implement the tumor-promoting action of nicotine on lung cells. Therefore, nAChRs may be a promising molecular target to arrest lung cancer progression and re-open mitochondrial apoptotic pathways.

【 授权许可】

   
2015 Chernyavsky et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150330015434220.pdf 1130KB PDF download
Figure 5. 23KB Image download
Figure 4. 15KB Image download
Figure 3. 20KB Image download
Figure 2. 44KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Grando SA: Connections of nicotine to cancer. Nat Rev Cancer 2014, 14:419-29.
  • [2]Organization WH: WHO Regulatory Consultation on the Safety of Electronic Nicotine Delivery Devices (ENDS). World Health Organisation, Geneva; 2010.
  • [3]Benowitz NL: Emerging nicotine delivery products. Implications for public health. Ann Am Thorac Soc 2014, 11:231-5.
  • [4]Steinberg MB, Zimmermann MH, Delnevo CD, Lewis MJ, Shukla P, Coups EJ, et al.: E-cigarette versus nicotine inhaler: comparing the perceptions and experiences of inhaled nicotine devices. J Gen Intern Med 2014, 29:1444-50.
  • [5]Schroeder MJ, Hoffman AC: Electronic cigarettes and nicotine clinical pharmacology. Tob Control 2014, 23(Suppl 2):ii30-5.
  • [6]Burstyn I: Peering through the mist: systematic review of what the chemistry of contaminants in electronic cigarettes tells us about health risks. BMC Public Health 2014, 14:18.
  • [7]Palazzolo DL: Electronic cigarettes and vaping: a new challenge in clinical medicine and public health. A literature review. Front Public Health 2013, 1:56.
  • [8]Goniewicz ML, Lee L: Electronic cigarettes are a source of thirdhand exposure to nicotine. Nicotine Tob Res 2015, 17:256-8.
  • [9]Klapproth H, Reinheimer T, Metzen J, Munch M, Bittinger F, Kirkpatrick CJ, et al.: Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn-Schmiedebergs Arch Pharmacol 1997, 355:515-23.
  • [10]Reinheimer T, Bernedo P, Klapproth H, Oelert H, Zeiske B, Racke K, et al.: Acetylcholine in isolated airways of rat, guinea pig, and human: species differences in role of airway mucosa. Am J Physiol 1996, 270:L722-8.
  • [11]Grando SA: Biological functions of keratinocyte cholinergic receptors. J Investig Dermatol Symposium Proceed 1997, 2:41-8.
  • [12]Grando SA, Pittelkow MR, Schallreuter KU: Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 2006, 126:1948-65.
  • [13]Corthay J, Dunant Y, Loctin F: Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4-aminopyridine in Torpedo. J Physiol 1982, 325:461-79.
  • [14]Dunant Y, Israel M: The release of acetylcholine. Sci Am 1985, 252:58-66.
  • [15]Lau JK, Brown KC, Thornhill BA, Crabtree CM, Dom AM, Witte TR, et al.: Inhibition of cholinergic signaling causes apoptosis in human bronchioalveolar carcinoma. Cancer Res 2013, 73:1328-39.
  • [16]Brown KC, Perry HE, Lau JK, Jones DV, Pulliam JF, Thornhill BA, et al.: Nicotine induces the upregulation of the alpha7-nicotinic receptor (alpha7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA pathway. J Biol Chem 2013, 288:33049-59.
  • [17]Zia S, Ndoye A, Nguyen VT, Grando SA: Nicotine enhances expression of the α3, α4, α5, and α7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res Commun Mol Pathol Pharmacol 1997, 97:243-62.
  • [18]Maus ADJ, Pereira EFR, Karachunski PI, Horton RM, Navaneetham D, Macklin K, et al.: Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol 1998, 54:779-88.
  • [19]Wang Y, Pereira EF, Maus AD, Ostlie NS, Navaneetham D, Lei S, et al.: Human bronchial epithelial and endothelial cells express alpha7 nicotinic acetylcholine receptors. Mol Pharmacol 2001, 60:1201-9.
  • [20]Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, et al.: Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology 2004, 145:2498-506.
  • [21]West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, et al.: Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 2003, 111:81-90.
  • [22]Lam DC, Girard L, Ramirez R, Chau WS, Suen WS, Sheridan S, et al.: Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res 2007, 67:4638-47.
  • [23]Davis R, Rizwani W, Banerjee S, Kovacs M, Haura E, Coppola D, et al.: Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS One 2009, 4:e7524.
  • [24]Lee CH, Huang CS, Chen CS, Tu SH, Wang YJ, Chang YJ, et al.: Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst 2010, 102:1322-35.
  • [25]Tu SH, Ku CY, Ho CT, Chen CS, Huang CS, Lee CH, et al.: Tea polyphenol (-)-epigallocatechin-3-gallate inhibits nicotine- and estrogen-induced alpha9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol Nutr Food Res 2011, 55:455-66.
  • [26]Lee CH, Chang YC, Chen CS, Tu SH, Wang YJ, Chen LC, et al.: Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces alpha9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res Treat 2011, 129:331-45.
  • [27]Improgo MR, Soll LG, Tapper AR, Gardner PD: Nicotinic acetylcholine receptors mediate lung cancer growth. Front Physiol 2013, 4:251.
  • [28]Shih YL, Liu HC, Chen CS, Hsu CH, Pan MH, Chang HW, et al.: Combination treatment with luteolin and quercetin enhances antiproliferative effects in nicotine-treated MDA-MB-231 cells by down-regulating nicotinic acetylcholine receptors. J Agric Food Chem 2010, 58:235-41.
  • [29]Catassi A, Paleari L, Servent D, Sessa F, Dominioni L, Ognio E, et al.: Targeting alpha7-nicotinic receptor for the treatment of pleural mesothelioma. Eur J Cancer 2008, 44:2296-311.
  • [30]Grozio A, Paleari L, Catassi A, Servent D, Cilli M, Piccardi F, et al.: Natural agents targeting the alpha7-nicotinic-receptor in NSCLC: a promising prospective in anti-cancer drug development. Int J Cancer 2008, 122:1911-5.
  • [31]Paleari L, Negri E, Catassi A, Cilli M, Servent D, D'Angelillo R, et al.: Inhibition of nonneuronal alpha7-nicotinic receptor for lung cancer treatment. Am J Respir Crit Care Med 2009, 179:1141-50.
  • [32]Paleari L, Sessa F, Catassi A, Servent D, Mourier G, Doria-Miglietta G, et al.: Inhibition of non-neuronal alpha7-nicotinic receptor reduces tumorigenicity in A549 NSCLC xenografts. Int J Cancer 2009, 125:199-211.
  • [33]van Hoek ML, Allen CS, Parsons SJ: Phosphotyrosine phosphatase activity associated with c-Src in large multimeric complexes isolated from adrenal medullary chromaffin cells. Biochem J 1997, 326(Pt 1):271-7.
  • [34]Nishioka T, Guo J, Yamamoto D, Chen L, Huppi P, Chen CY: Nicotine, through upregulating pro-survival signaling, cooperates with NNK to promote transformation. J Cell Biochem 2010, 109:152-61.
  • [35]Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E, et al.: Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 2006, 116:2208-17.
  • [36]Dasgupta P, Rizwani W, Pillai S, Davis R, Banerjee S, Hug K, et al.: ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst 2011, 103:317-33.
  • [37]Lin W, Hirata N, Sekino Y, Kanda Y: Role of alpha7-nicotinic acetylcholine receptor in normal and cancer stem cells. Curr Drug Targets 2012, 13:656-65.
  • [38]Mousa S, Mousa SA: Cellular and molecular mechanisms of nicotine's pro-angiogenesis activity and its potential impact on cancer. J Cell Biochem 2006, 97:1370-8.
  • [39]Zhang J, Kamdar O, Le W, Rosen GD, Upadhyay D: Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer. Am J Respir Cell Mol Biol 2009, 40:135-46.
  • [40]Lykhmus O, Gergalova G, Koval L, Zhmak M, Komisarenko S, Skok M: Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction. Int J Biochem Cell Biol 2014, 53C:246-52.
  • [41]Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Chernyshov V, Kryukova E, et al.: Mitochondria express alpha7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One 2012, 7:e31361.
  • [42]Kalashnyk OM, Gergalova GL, Komisarenko SV, Skok MV: Intracellular localization of nicotinic acetylcholine receptors in human cell lines. Life Sci 2012, 91:1033-7.
  • [43]Gergalova GL, Skok MV: Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors. Ukr Biokhim Zh 2011, 83:13-21.
  • [44]Gergalova GL, Likhmous OY, Skok M: Possible influence of a7 nicotinic acetylcholine receptor activation in the mitochondrial membrane on apoptosis development. Neurophysiology 2011, 43:195-7.
  • [45]Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, et al.: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002, 2:55-67.
  • [46]Buki A, Okonkwo DO, Wang KK, Povlishock JT: Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 2000, 20:2825-34.
  • [47]Grimm S, Brdiczka D: The permeability transition pore in cell death. Apoptosis 2007, 12:841-55.
  • [48]Chikova A, Grando SA: Naturally occurring variants of human α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation. PLoS One 2011, 6:e27978.
  • [49]Conti-Tronconi BM, McLane KE, Raftery MA, Grando SA, Protti MP: The nicotinic acetylcholine receptor: structure and autoimmune pathology. Crit Rev Biochem Mol Biol 1994, 29:69-123.
  • [50]Grando SA, Horton RM, Pereira EFR, Diethelm-Okita BM, George PM, Albuquerque EX, et al.: A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes. J Investig Dermatol 1995, 105:774-81.
  • [51]Guyenet P, Lefresne P, Rossier J, Beaujouan JC, Glowinski J: Inhibition by hemicholinium-3 of (14C)acetylcholine synthesis and (3H)choline high-affinity uptake in rat striatal synaptosomes. Mol Pharmacol 1973, 9:630-9.
  • [52]Nguyen VT, Ndoye A, Grando SA: Novel human α9 acetylcholine receptor regulating keratinocyte adhesion is targeted by pemphigus vulgaris autoimmunity. Am J Pathol 2000, 157:1377-91.
  • [53]Nguyen VT, Hall LL, Gallacher G, Ndoye A, Jolkovsky DL, Webber RJ, et al.: Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia. J Dent Res 2000, 79:939-49.
  • [54]Arredondo J, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Kummer W, et al.: Central role of α7 nicotinic receptor in differentiation of the stratified squamous epithelium. J Cell Biol 2002, 159:325-36.
  • [55]Chernyavsky AI, Kalantari-Dehaghi M, Phillips C, Marchenko S, Grando SA: Novel cholinergic peptides SLURP-1 and -2 regulate epithelialization of cutaneous and oral wounds. Wound Repair Regen 2012, 20:103-13.
  • [56]Marchenko S, Chernyavsky AI, Arredondo J, Gindi V, Grando SA: Antimitochondrial autoantibodies in pemphigus vulgaris: a missing link in disease pathophysiology. J Biol Chem 2010, 285:3695-704.
  • [57]Grando SA: Muscarinic receptor agonists and antagonists: effects on keratinocyte functions. Handb Exp Pharmacol 2012, 208:429-50.
  • [58]Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P: Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005, 48:4705-45.
  • [59]Pohanka M: Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci 2012, 13:2219-38.
  • [60]Koval L, Lykhmus O, Zhmak M, Khruschov A, Tsetlin V, Magrini E, et al.: Differential involvement of alpha4beta2, alpha7 and alpha9alpha10 nicotinic acetylcholine receptors in B lymphocyte activation in vitro. Int J Biochem Cell Biol 2011, 43:516-24.
  • [61]Berge EM, Doebele RC: Targeted therapies in non-small cell lung cancer: emerging oncogene targets following the success of epidermal growth factor receptor. Semin Oncol 2014, 41:110-25.
  • [62]Xue M, Cao X, Zhong Y, Kuang D, Liu X, Zhao Z, et al.: Insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitors in cancer therapy: advances and perspectives. Curr Pharm Des 2012, 18:2901-13.
  • [63]Alevizakos M, Kaltsas S, Syrigos KN: The VEGF pathway in lung cancer. Cancer Chemother Pharmacol 2013, 72:1169-81.
  • [64]Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP: Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 2000, 475:267-72.
  • [65]Gergalova G, Lykhmus O, Komisarenko S, Skok M: Alpha7 nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. Int J Biochem Cell Biol 2014, 49:26-31.
  • [66]Iskandar AR, Liu C, Smith DE, Hu KQ, Choi SW, Ausman LM, et al.: Beta-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prev Res (Phila) 2013, 6:309-20.
  • [67]Kim MH, Kim HR, Cho BC, Bae MK, Kim EY, Lee CY, et al.: Impact of cigarette smoking on response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in lung adenocarcinoma with activating EGFR mutations. Lung Cancer 2014, 84:196-202.
  • [68]Wang S, Takayama K, Tanaka K, Takeshita M, Nakagaki N, Ijichi K, et al.: Nicotine induces resistance to epidermal growth factor receptor tyrosine kinase inhibitor by alpha1 nicotinic acetylcholine receptor-mediated activation in PC9 cells. J Thorac Oncol 2013, 8:719-25.
  • [69]Wu CH, Lee CH, Ho YS: Nicotinic acetylcholine receptor-based blockade: Applications of molecular target for cancer therapy. Clin Cancer Res 2011, 17:3533-41.
  • [70]Improgo MR, Tapper AR, Gardner PD: Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer. Biochem Pharmacol 2011, 82:1015-21.
  • [71]Singh S, Pillai S, Chellappan S: Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. J Oncol 2011, 2011:456743.
  • [72]Schuller HM: Regulatory role of the alpha7nAChR in cancer. Curr Drug Targets 2012, 13:680-7.
  • [73]Ma X, Jia Y, Zu S, Li R, Jia Y, Zhao Y, et al.: Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1alpha and VEGF expression in non-small cell lung cancer. Toxicol Appl Pharmacol 2014, 278:172-9.
  • [74]Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA: Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of α7 nicotinic receptor in oral keratinocytes. FASEB J 2006, 20:2093-101.
  • [75]Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA: Receptor-mediated tobacco toxicity: acceleration of sequential expression of α5 and α7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. Faseb J 2008, 22:1356-68.
  • [76]Arredondo J, Chernyavsky AI, Marubio LM, Beaudet AL, Jolkovsky DL, Pinkerton KE, et al.: Receptor-mediated tobacco toxicity: Regulation of gene expression through α3α2 nicotinic receptor in oral epithelial cells. Am J Pathol 2005, 166:597-613.
  • [77]Chernyavsky AI, Arredondo J, Karlsson E, Wessler I, Grando SA: The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J Biol Chem 2005, 280:39220-8.
  • [78]Chernyavsky AI, Arredondo J, Marubio LM, Grando SA: Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. J Cell Sci 2004, 117:5665-79.
  • [79]Chernyavsky AI, Arredondo J, Vetter DE, Grando SA: Central role of α9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization. Exp Cell Res 2007, 313:3542-55.
  • [80]Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, et al.: Tobacco components stimulate Akt-dependent proliferation and NF{kappa}B-dependent survival in lung cancer cells. Carcinogenesis 2005, 26:1182-95.
  • [81]Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JM: Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. Pulm Pharmacol Ther 2007, 20:629-41.
  • [82]Tsai JR, Chong IW, Chen CC, Lin SR, Sheu CC, Hwang JJ: Mitogen-activated protein kinase pathway was significantly activated in human bronchial epithelial cells by nicotine. DNA Cell Biol 2006, 25:312-22.
  • [83]Shi D, Guo W, Chen W, Fu L, Wang J, Tian Y, et al.: Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating alpha7AChR, ERK, HIF-1alpha and VEGF/PEDF signaling. PLoS One 2012, 7:e43898.
  • [84]Nishioka T, Kim HS, Luo LY, Huang Y, Guo J, Chen CY: Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res 2011, 13:R113.
  • [85]Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA: Receptor-mediated tobacco toxicity: alterations of the NF-kappaB expression and activity downstream of α7 nicotinic receptor in oral keratinocytes. Life Sci 2007, 80:2191-4.
  • [86]Chernyavsky AI, Arredondo J, Qian J, Galitovskiy V, Grando SA: Coupling of ionic events to protein kinase signaling cascades upon activation of α7 nicotinic receptor: Cooperative regulation of α2-integrin expression and Rho-kinase activity. J Biol Chem 2009, 284:22140-8.
  • [87]Wada T, Naito M, Kenmochi H, Tsuneki H, Sasaoka T: Chronic nicotine exposure enhances insulin-induced mitogenic signaling via up-regulation of alpha7 nicotinic receptors in isolated rat aortic smooth muscle cells. Endocrinology 2007, 148:790-9.
  • [88]Morimoto N, Takemoto S, Kawazoe T, Suzuki S: Nicotine at a low concentration promotes wound healing. J Surg Res 2008, 145:199-204.
  • [89]Liem PH, Morimoto N, Ito R, Kawai K, Suzuki S: Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. J Surg Res 2013, 182:353-61.
  • [90]Jacobi J, Jang JJ, Sundram U, Dayoub H, Fajardo LF, Cooke JP: Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. Am J Pathol 2002, 161:97-104.
  • [91]Narla ST, Klejbor I, Birkaya B, Lee YW, Morys J, Stachowiak EK, et al.: Activation of developmental nuclear fibroblast growth factor receptor 1 signaling and neurogenesis in adult brain by alpha7 nicotinic receptor agonist. Stem Cells Transl Med 2013, 2:776-88.
  • [92]Mudo G, Belluardo N, Mauro A, Fuxe K: Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. Neuroscience 2007, 145:470-83.
  • [93]Belluardo N, Mudo G, Bonomo A, Di Liberto V, Frinchi M, Fuxe K: Nicotine-induced fibroblast growth factor-2 restores the age-related decline of precursor cell proliferation in the subventricular zone of rat brain. Brain Res 2008, 1193:12-24.
  • [94]Salimi M, Esfahani M, Habibzadeh N, Aslani HR, Amanzadeh A, Esfandiary M, et al.: Change in nicotine-induced VEGF, PGE2 AND COX-2 expression following COX inhibition in human oral squamous cancer. J Environ Pathol Toxicol Oncol 2012, 31:349-56.
  • [95]Moffett J, Kratz E, Stachowiak MK: Increased tyrosine phosphorylation and novel cis-acting element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity. Brain Res Mol Brain Res 1998, 55:293-305.
  • [96]Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, et al.: MG624, an alpha7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis 2012, 15:99-114.
  • [97]Baker LP, Peng HB: Induction of acetylcholine receptor cluster formation by local application of growth factors in cultured Xenopus muscle cells. Neurosci Lett 1995, 185:135-8.
  • [98]Dai Z, Peng HB: The influence of basic fibroblast growth factor on acetylcholine receptors in cultured muscle cells. Neurosci Lett 1992, 144:14-8.
  • [99]Cucina A, Dinicola S, Coluccia P, Proietti S, D'Anselmi F, Pasqualato A, et al.: Nicotine stimulates proliferation and inhibits apoptosis in colon cancer cell lines through activation of survival pathways. J Surg Res 2012, 178:233-41.
  • [100]Nair MK, Chetty DJ, Ho H, Chien YW: Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J Pharm Sci 1997, 86:257-62.
  • [101]Chen LL, Chetty DJ, Chien YW: A mechanistic analysis to characterize oramucosal permeation properties. Int J Pharm 1999, 184:63-72.
  • [102]Nielsen HM, Rassing MR: Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: effect of pH and concentration. Eur J Pharm Sci 2002, 16:151-7.
  • [103]Takami K, Saito H, Okuda M, Takano M, Inui KI: Distinct characteristics of transcellular transport between nicotine and tetraethylammonium in LLC-PK1 cells. J Pharmacol Exp Ther 1998, 286:676-80.
  • [104]Fukada A, Saito H, Inui K: Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco-2. J Pharmacol Exp Ther 2002, 302:532-8.
  • [105]Nicolier M, Decrion-Barthod AZ, Launay S, Pretet JL, Mougin C: Spatiotemporal activation of caspase-dependent and -independent pathways in staurosporine-induced apoptosis of p53wt and p53mt human cervical carcinoma cells. Biol Cell 2009, 101:455-67.
  • [106]Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, et al.: Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 2001, 21:7993-8003.
  • [107]Saxena G, Patro IK, Nath C: ICV STZ induced impairment in memory and neuronal mitochondrial function: A protective role of nicotinic receptor. Behav Brain Res 2011, 224:50-7.
  • [108]Yu W, Mechawar N, Krantic S, Quirion R: Alpha7 Nicotinic receptor activation reduces beta-amyloid-induced apoptosis by inhibiting caspase-independent death through phosphatidylinositol 3-kinase signaling. J Neurochem 2011, 119:848-58.
  • [109]Schaal C, Chellappan SP: Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res 2014, 12:14-23.
  • [110]Baldessarini RJ, Karobath M: Biochemical physiology of central synapses. Annu Rev Physiol 1973, 35:273-304.
  • [111]Moser N, Mechawar N, Jones I, Gochberg-Sarver A, Orr-Urtreger A, Plomann M, et al.: Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J Neurochem 2007, 102:479-92.
  • [112]Jones IW, Wonnacott S: Why doesn't nicotinic ACh receptor immunoreactivity knock out? Trends Neurosci 2005, 28:343-5.
  文献评价指标  
  下载次数:25次 浏览次数:35次