期刊论文详细信息
BMC Microbiology
The nucleotide excision repair (NER) system of Helicobacter pylori: Role in mutation prevention and chromosomal import patterns after natural transformation
Sebastian Suerbaum1  Christelle Bahlawane1  Christian Kraft1  Xavier Didelot2  Stefan Kulick1  Juliane Krebes1  Claudia Moccia1 
[1] Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, , 30625, Hannover, Germany;Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
关键词: Nucleotide excision repair;    Recombination;    Mutation;    Helicobacter pylori;   
Others  :  1221958
DOI  :  10.1186/1471-2180-12-67
 received in 2012-02-08, accepted in 2012-04-24,  发布年份 2012
PDF
【 摘 要 】

Background

Extensive genetic diversity and rapid allelic diversification are characteristics of the human gastric pathogen Helicobacter pylori, and are believed to contribute to its ability to cause chronic infections. Both a high mutation rate and frequent imports of short fragments of exogenous DNA during mixed infections play important roles in generating this allelic diversity. In this study, we used a genetic approach to investigate the roles of nucleotide excision repair (NER) pathway components in H. pylori mutation and recombination.

Results

Inactivation of any of the four uvr genes strongly increased the susceptibility of H. pylori to DNA damage by ultraviolet light. Inactivation of uvrA and uvrB significantly decreased mutation frequencies whereas only the uvrA deficient mutant exhibited a significant decrease of the recombination frequency after natural transformation. A uvrC mutant did not show significant changes in mutation or recombination rates; however, inactivation of uvrC promoted the incorporation of significantly longer fragments of donor DNA (2.2-fold increase) into the recipient chromosome. A deletion of uvrD induced a hyper-recombinational phenotype.

Conclusions

Our data suggest that the NER system has multiple functions in the genetic diversification of H. pylori, by contributing to its high mutation rate, and by controlling the incorporation of imported DNA fragments after natural transformation.

【 授权许可】

   
2012 Moccia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804130252523.pdf 1205KB PDF download
Figure 4. 66KB Image download
Figure 3. 99KB Image download
Figure 2. 57KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Suerbaum S, Michetti P: Helicobacter pyloriinfection. N Engl J Med 2002, 347:1175-1186.
  • [2]Langenberg W, Rauws EA, Widjojokusumo A, Tytgat GN, Zanen HC: Identification ofCampylobacter pyloridisisolates by restriction endonuclease DNA analysis. J Clin Microbiol 1986, 24:414-417.
  • [3]Majewski SI, Goodwin CS: Restriction endonuclease analysis of the genome ofCampylobacter pyloriwith a rapid extraction method: evidence for considerable genomic variation. J Infect Dis 1988, 157:465-471.
  • [4]Bjorkholm B, Sjolund M, Falk PG, Berg OG, Engstrand L, Andersson DI: Mutation frequency and biological cost of antibiotic resistance inHelicobacter pylori. Proc Natl Acad Sci U S A 2001, 98:14607-14612.
  • [5]Kersulyte D, Chalkauskas H, Berg DE: Emergence of recombinant strains ofHelicobacter pyloriduring human infection. Mol Microbiol 1999, 31:31-43.
  • [6]Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, Kunstmann E, Dyrek I, Achtman M: Free recombination withinHelicobacter pylori. Proc Natl Acad Sci U S A 1998, 95:12619-12624.
  • [7]Morelli G, Didelot X, Kusecek B, Schwarz S, Bahlawane C, Falush D, Suerbaum S, Achtman M: Microevolution ofHelicobacter pyloriduring prolonged infection of single hosts and within families. PLoS Genet 2010, 6:e1001036.
  • [8]Kang J, Blaser MJ: Bacterial populations as perfect gases: genomic integrity and diversification tensions inHelicobacter pylori. Nat Rev Microbiol 2006, 4:826-836.
  • [9]Fischer W, Prassl S, Haas R: Virulence mechanisms and persistence strategies of the human gastric pathogenHelicobacter pylori. Curr Top Microbiol Immunol 2009, 337:129-171.
  • [10]Suerbaum S, Josenhans C: Helicobacter pylorievolution and phenotypic diversification in a changing host. Nat Rev Microbiol 2007, 5:441-452.
  • [11]Kraft C, Suerbaum S: Mutation and recombination inHelicobacter pylori: mechanisms and role in generating strain diversity. Int J Med Microbiol 2005, 295:299-305.
  • [12]Kulick S, Moccia C, Didelot X, Falush D, Kraft C, Suerbaum S: Mosaic DNA imports with interspersions of recipient sequence after natural transformation ofHelicobacter pylori. PLoS One 2008, 3:e3797.
  • [13]Lin EA, Zhang XS, Levine SM, Gill SR, Falush D, Blaser MJ: Natural transformation ofHelicobacter pyloriinvolves the integration of short DNA fragments interrupted by gaps of variable size. PLoS Pathog 2009, 5:e1000337.
  • [14]Rajski SR, Williams RM: DNA Cross-Linking Agents as Antitumor Drugs. Chem Rev 1998, 98:2723-2796.
  • [15]Reardon JT, Sancar A: Nucleotide excision repair. Prog Nucleic Acid Res Mol Biol 2005, 79:183-235.
  • [16]Moolenaar GF, Monaco V, van der Marel GA, van Boom JH, Visse R, Goosen N: The effect of the DNA flanking the lesion on formation of the UvrB-DNA preincision complex. Mechanism for the UvrA-mediated loading of UvrB onto a DNA damaged site. J Biol Chem 2000, 275:8038-8043.
  • [17]Lin JJ, Sancar A: Active site of (A)BC excinuclease. I. Evidence for 5' incision by UvrC through a catalytic site involving Asp399, Asp438, Asp466, and His538 residues. J Biol Chem 1992, 267:17688-17692.
  • [18]Verhoeven EE, van Kesteren M, Moolenaar GF, Visse R, Goosen N: Catalytic sites for 3' and 5' incision ofEscherichia colinucleotide excision repair are both located in UvrC. J Biol Chem 2000, 275:5120-5123.
  • [19]Zhang G, Deng E, Baugh L, Kushner SR: Identification and characterization ofEscherichia coliDNA helicase II mutants that exhibit increased unwinding efficiency. J Bacteriol 1998, 180:377-387.
  • [20]Petit C, Sancar A: Nucleotide excision repair: from E. coli to man. Biochimie 1999, 81:15-25.
  • [21]Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, et al.: The complete genome sequence of the gastric pathogenHelicobacter pylori. Nature 1997, 388:539-547.
  • [22]Thompson SA, Latch RL, Blaser JM: Molecular characterization of theHelicobacter pylori uvrBgene. Gene 1998, 209:113-122.
  • [23]Kang J, Blaser MJ: UvrD helicase suppresses recombination and DNA damage-induced deletions. J Bacteriol 2006, 188:5450-5459.
  • [24]Hasegawa K, Yoshiyama K, Maki H: Spontaneous mutagenesis associated with nucleotide excision repair inEscherichia coli. Genes Cells 2008, 13:459-469.
  • [25]Garibyan L, Huang T, Kim M, Wolff E, Nguyen A, Nguyen T, Diep A, Hu K, Iverson A, Yang H, et al.: Use of therpoBgene to determine the specificity of base substitution mutations on theEscherichia colichromosome. DNA Repair (Amst) 2003, 2:593-608.
  • [26]Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA: UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments inEscherichia coli. EMBO J 2005, 24:180-189.
  • [27]Lin JJ, Sancar A: A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. Biochemistry 1989, 28:7979-7984.
  • [28]Snowden A, Kow YW, Van Houten B: Damage repertoire of theEscherichia coliUvrABC nuclease complex includes abasic sites, base-damage analogues, and lesions containing adjacent 5' or 3' nicks. Biochemistry 1990, 29:7251-7259.
  • [29]Howard-Flanders P, Boyce RP, Theriot L: Three loci inEscherichia coliK-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 1966, 53:1119-1136.
  • [30]Ogawa H, Shimada K, Tomizawa J: Studies on radiation-sensitive mutants ofE. coli. I. Mutants defective in the repair synthesis. Mol Gen Genet 1968, 101:227-244.
  • [31]Hori M, Ishiguro C, Suzuki T, Nakagawa N, Nunoshiba T, Kuramitsu S, Yamamoto K, Kasai H, Harashima H, Kamiya H: UvrA and UvrB enhance mutations induced by oxidized deoxyribonucleotides. DNA Repair (Amst) 2007, 6:1786-1793.
  • [32]Branum ME, Reardon JT, Sancar A: DNA repair excision nuclease attacks undamaged DNA. A potential source of spontaneous mutations. J Biol Chem 2001, 276:25421-25426.
  • [33]Thilly WG: Have environmental mutagens caused oncomutations in people? Nat Genet 2003, 34:255-259.
  • [34]Tark M, Tover A, Koorits L, Tegova R, Kivisaar M: Dual role of NER in mutagenesis inPseudomonas putida. DNA Repair (Amst) 2008, 7:20-30.
  • [35]Stingl K, Muller S, Scheidgen-Kleyboldt G, Clausen M, Maier B: Composite system mediates two-step DNA uptake intoHelicobacter pylori. Proc Natl Acad Sci U S A 2010, 107:1184-1189.
  • [36]Lovett ST, Kolodner RD: Identification and purification of a single-stranded-DNA-specific exonuclease encoded by therecJgene ofEscherichia coli. Proc Natl Acad Sci U S A 1989, 86:2627-2631.
  • [37]Cox MM: The bacterial RecA protein as a motor protein. Annu Rev Microbiol 2003, 57:551-577.
  • [38]Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, et al.: Genomic-sequence comparison of two unrelated isolates of the human gastric pathogenHelicobacter pylori. Nature 1999, 397:176-180.
  • [39]Hanahan D: Studies on transformation ofEscherichia coliwith plasmids. J Mol Biol 1983, 166:557-580.
  • [40]Casadaban MJ, Cohen SN: Analysis of gene control signals by DNA fusion and cloning inEscherichia coli. J Mol Biol 1980, 138:179-207.
  • [41]Sambrook J, Russell DG: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2004.
  • [42]Kulick S, Moccia C, Kraft C, Suerbaum S: TheHelicobacter pylori mutYhomologue HP0142 is an antimutator gene that prevents specific C to A transversions. Arch Microbiol 2008, 189:263-270.
  • [43]Labigne-Roussel A, Courcoux P, Tompkins L: Gene disruption and replacement as a feasible approach for mutagenesis ofCampylobacter jejuni. J Bacteriol 1988, 170:1704-1708.
  • [44]Ge Z, Hiratsuka K, Taylor DE: Nucleotide sequence and mutational analysis indicate that twoHelicobacter pylorigenes encode a P-type ATPase and a cation-binding protein associated with copper transport. Mol Microbiol 1995, 15:97-106.
  • [45]Huang S, Kang J, Blaser MJ: Antimutator role of the DNA glycosylasemutYgene inHelicobacter pylori. J Bacteriol 2006, 188:6224-6234.
  • [46]Furuta T, Soya Y, Sugimoto M, Shirai N, Nakamura A, Kodaira C, Nishino M, Okuda M, Okimoto T, Murakami K, et al.: Modified allele-specific primer-polymerase chain reaction method for analysis of susceptibility ofHelicobacter pyloristrains to clarithromycin. J Gastroenterol Hepatol 2007, 22:1810-1815.
  • [47]Kass R, Raftery A: Bayes factors. J Am Stat Assoc 1995, 90:773-795.
  • [48]Goodman SN: Toward evidence-based medical statistics. 2: The Bayes factor. Ann Intern Med 1999, 130:1005-1013.
  • [49]Jeffreys H: Theory of probability. Oxford University Press, USA; 1961.
  • [50]Schwarz G: Estimating the dimension of a model. Ann Stat 1978, 6:461-464.
  • [51]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [52]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33:103-119.
  文献评价指标  
  下载次数:47次 浏览次数:13次