期刊论文详细信息
BMC Genomics
Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways
Rup Lal1  Jack A Gilbert2  Jitendra P Khurana3  Naseer Sangwan1  Phoebe Oldach1  Roshan Kumar1  Helianthous Verma1 
[1] Room No. 115, Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India;Department of Ecology and Evolution, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA;Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
关键词: Xenobiotic compounds;    lin genes;    Sphingobium;    Hexachlorocyclohexane (HCH);   
Others  :  1091370
DOI  :  10.1186/1471-2164-15-1014
 received in 2014-05-10, accepted in 2014-10-23,  发布年份 2014
PDF
【 摘 要 】

Background

Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6).

Results

Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. Additionally, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity.

Conclusion

The bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their arrangement with respect to IS6100 and evidence for potential plasmid content elucidate possible evolutionary acquisition mechanisms for this pathway. This study further opens the horizon for selection of bacterial strains for inclusion in an HCH bioremediation consortium and suggests that HDIPO4, IP26 and B90A would be appropriate candidates for inclusion.

【 授权许可】

   
2014 Verma et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128171418697.pdf 4097KB PDF download
Figure 10. 70KB Image download
Figure 9. 64KB Image download
Figure 8. 44KB Image download
Figure 7. 149KB Image download
Figure 6. 108KB Image download
Figure 5. 127KB Image download
Figure 4. 125KB Image download
Figure 3. 68KB Image download
Figure 2. 99KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Takeuchi M, Hamana K, Hiraishi A: Proposal of the genus Sphingomonas sensustricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001, 51:1405-1417.
  • [2]Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A, Kato K: Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006, 56:85-89.
  • [3]Balkwill DL, Fredrickson J, Romine M: From Sphingomonas and Related Genera. In The Prokaryotes: A Handbook on the Biology of Bacteria. Volume 7. Edited by Stackebrandt E. Singapore: Springer; 2006:605-629.
  • [4]Li YF: Global technical hexachlorocyclohexane usage and its contamination consequences in the environment: from 1948 to 1997. Sci Total Environ 1999, 232:121-158.
  • [5]Vijgen J, Yi LF, Forter M, Lal R, Weber R: The legacy of lindane and technical HCH production. Organohalog Comp 2006, 68:899-904.
  • [6]Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HPE, Holliger C, Jackson C, Oakeshott JG: The biochemistry of microbial degradation of hexachlorocyclohexane (HCH) and prospects for bioremediation. Microbiol Mol Biol Rev 2010, 74:58-80.
  • [7]Boltner D, Moreno-Morillas S, Ramos JL: 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 2005, 7:1329-1338.
  • [8]Dadhwal M, Singh A, Prakash O, Gupta SK, Kumari K, Sharma P, Jit S, Verma M, Holliger C, Lal R: Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 2009, 106:381-392.
  • [9]Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, Kaur J, Anand S, Malhotra J, Jindal S, Nigam A, Lal D, Dua A, Saxena A, Garg N, Verma M, Kaur J, Mukherjee U, Gilbert JA, Dowd SE, Raman R, Khurana P, Khurana JP, Lal R: Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS ONE 2012, 7:e46219.
  • [10]Sangwan N, Verma H, Kumar R, Negi V, Lax S, Khurana P, Khurana JP, Gilbert JA, Lal R: Reconstructing an ancestral genotype of two hexachlorocyclohexane degrading Sphingobium species using metagenomic sequence data. ISME J 2013. doi: 10.1038/ismej.2013.153
  • [11]Nagata Y, Miyauchi K, Takagi M: Complete analysis of genes and enzymes for gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 1999, 23:380-390.
  • [12]Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M: Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 2007, 76:741-752.
  • [13]Sharma P, Pandey R, Kumari K, Pandey G, Jackson CJ, Russell RJ, Oakeshott JG, Lal R: Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers. PLoS ONE 2011, 6:e25128.
  • [14]Geueke B, Garg N, Ghosh S, Fleischmann T, Holliger C, Lal L, Kohler HPE: Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers. Environ Microbiol 2013, 15:1040-1049.
  • [15]Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, Woyke TA, Currie CA, Suen G, Poulsen M: Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 2013, 79:3724-3733.
  • [16]Sorek R, Lawrence CM, Wiedenheft B: CRISPR-mediated adaptive immune system in bacteria and archaea. Annu Rev Biochem 2013, 82:237-266.
  • [17]Bhaya D, Davison M, Barrangou R: CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011, 45:273-297.
  • [18]Konstantinidis K, Tiedje J: Genomic insights that advance the species definition for prokaryotes. PNAS 2004, 102:2567-2572.
  • [19]Nagata Y, Natsui S, Endo R, Ohtsubo Y, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M: Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26S, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme Microb Technol 2011, 49:499-508.
  • [20]Jit S, Dadhwal M, Kumari H, Jindal S, Kaur J, Lata P, Niharika N, Lal D, Garg N, Gupta SK, Sharma P, Bala K, Singh A, Vijgen J, Weber R, Lal R: Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environ Sci Pollut Res Int 2011, 18:586-597.
  • [21]Endo R, Ohtsubo Y, Tsuda N, Nagata Y: Identification and characterization of genes encoding a putative ABC-type transporter essential for utilization of gamma-hexachlorocyclohexane in Sphingobium japonicum UT26. J Bacteriol 2007, 189:3712-3720.
  • [22]Ninfa AJ, Magasanik B: Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A 1986, 83:5909-5913.
  • [23]Scott N, Hess M, Bouskill NJ, Mason OU, Jansson JK, Gilbert JA: The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments. Front Microbiol 2014., 5doi:10.3389/fmicb.2014.00108
  • [24]Ninfa AJ, Ninfa EG, Lupas AN, Srock A, Magasanik B, Stock J: Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc Natl Acad Sci U S A 1988, 85:5492-5496.
  • [25]Pal R, Bala S, Dhingra G, Prakash O, Dadhwal M, Kumar M, Prabagaran SR, Shivaji S, Cullum J, Holliger C, Lal R: The hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26S and Sp+ having similar lin genes are three distinct species, Sphingobium indicum sp. nov; S. japonicum sp. nov; and S. francense sp. nov. and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 2005, 55:1965-1972.
  • [26]Kumari H, Gupta SK, Jindal S, Katoch P, Lal R: Description of Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov. isolated from oil contaminated soil. Int J Syst Evol Microbiol 2009, 59:2291-2296.
  • [27]Dadhwal M, Jit S, Kumari H, Lal R: Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH) degrading bacterium isolated from an HCH dump site. Int J Syst Evol Microbiol 2009, 59:3140-3144.
  • [28]Singh A, Lal R: A novel hexachlorocyclohexane degrading bacterium Sphingobium ummariense sp. nov. isolated from HCH contaminated soil. Int J Syst Evol Microbiol 2009, 59:162-166.
  • [29]Bala K, Sharma P, Lal R: Sphingobium quisquiliarum sp. nov., P25T a hexachlorocyclohexane (HCH) degrading bacterium isolated from HCH contaminated soil. Int J Syst Evol Microbiol 2010, 60:429-433.
  • [30]Kaur J, Moskalikova H, Niharika N, Sedlackova M, Hampl A, Damborsky J, Prokop Z, Lal R: Sphingobium baderi sp. nov., isolated from a hexachlorocyclohexane (HCH) dumpsite in Spolana. Int J Syst Evol Microbiol 2012, 63:673-678.
  • [31]Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, Holliger C, van der Meer JR, Lal R: Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer. J Bacteriol 2004, 186:2225-2235.
  • [32]Mohn WW, Mertens B, Neufeld J, De Lorenzo V: Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. Environ Microbiol 2006, 8:60-68.
  • [33]Malhotra S, Sharma P, Kumari H, Singh A, Lal R: Localization of HCH catabolic genes (lin genes) in Sphingobium indicum B90A. Indian J Microbiol 2007, 47:271-275.
  • [34]Gai Z, Wang X, Tang H, Tai C, Tao F, Wu G, Xu P: Genome sequence of Sphingobium yanoikuyae XLDN2-5, an efficient carbazole-degrading strain. J Bacteriol 2011, 193:6404-6405.
  • [35]Tabata M, Ohtsubo Y, Ohhata S, Tsuda M, Nagata Y: Complete genome sequence of the gamma-hexachlorohexane-degrading bacterium Sphingomonas sp. Strain MM-1. Genome Announc 2013, 1:e00247-13.
  • [36]Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, Holliger C, van der Meer JR, Lal R: Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers in Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 2002, 68:6021-6028.
  • [37]Suar M, van der Meer JR, Lawlor K, Holliger C, Lal R: Dynamics of multiple lin gene expression in Sphingomonas paucimobilis B90A in response to different hexachlorocyclohexane isomers. Appl Environ Microbiol 2004, 70:6650-6656.
  • [38]Nagata Y, Mori K, Takagi M, Murzin AG, Damborsky J: Identification of protein fold and catalytic residues of γ-hexachlorocyclohexane dehydrochlorinase LinA. Proteins 2001, 45:471-477.
  • [39]Sharma P, Jindal S, Bala K, Kumari K, Niharika N, Kaur J, Pandey G, Pandey R, Russell RJ, Oakeshott JG, Lal R: Functional screening of enzymes and bacteria for the dechlorination of hexachlorocyclohexane by a high-throughput colorimetric assay. Biodegradation 2013, 25:179-187.
  • [40]Nagata Y, Hatta T, Imai R, Kimbara K, Fukuda M, Yano K, Takagi M: Purification and characterization of γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase (LinA) from Pseudomonas paucimobilis. Biosci Biotechnol Biochem 1993, 59:1582-1583.
  • [41]Ceremonie H, Boubakri H, Mavingui P, Simonet P, Vogel TM: Plasmid-encoded γ-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiol Lett 2006, 257:243-252.
  • [42]Wu J, Hong Q, Han P, He J, Li S: A gene linB2 responsible for the conversion of β-HCH and 2,3,4,5,6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A. Appl Microbiol Biotechnol 2007, 73:1097-1105.
  • [43]Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M, Damborsky J, Nagata Y: Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol 2007, 188:313-325.
  • [44]Glavinas H, Krajcsi P, Cserepes J, Sarkadi B: The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 2004, 1:27-42.
  • [45]Anand S, Sangwan N, Lata P, Kaur J, Dua A, Singh AK, Verma M, Kaur J, Khurana JP, Khurana P, Mathur S, Lal R: Genome sequence of Sphingobium indicum B90A, a hexachlorocyclohexane-degrading bacterium. J Bacteriol 2012, 194:4471-4472.
  • [46]Nagata Y, Ohtsubo Y, Endo R, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M: Complete genome sequence of the representative γ-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26S. J Bacteriol 2010, 192:5852-5853.
  • [47]Masai E, Kamimura N, Kasai D, Oguchi A, Ankai A, Fuki S, Fukui S, Takahashi M, Yashiro I, Sasaki H, Harada T, Nakamura S, Katano Y, Narita-Yamada S, Nakazawa H, Hara H, Katayama Y, Fukuda M, Yamazaki S, Fujitab N: Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. J Bacteriol 2012, 194:534-535.
  • [48]Sambrook J, Fritsch EJ, Maniatis T, Maniatis T (Eds): Molecular Cloning: A Laboratory Manual. Volume 2. 2nd edition. New York: Cold Spring Harbor Laboratory Press; 1989.
  • [49]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res 2009, 19:1117-1123.
  • [50]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25:1754-1760.
  • [51]Kaur J, Verma H, Tripathi C, Khurana JP, Lal R: Draft genome sequence of a hexachlorocyclohexane-degrading bacterium, Sphingobium baderi strain LL03T. Genome Announc 2013, 1:e00751-13.
  • [52]Kumar R, Dwivedi V, Negi V, Khurana JP, Lal R: Draft genome sequence of Sphingobium lactosutens strain DS20 isolated from an hexachlorocyclohexane (HCH) dumpsite. Genome Announc 2013, 1:00753-13.
  • [53]Niharika N, Sangwan N, Ahmad S, Singh P, Khurana JP, Lal R: Draft genome sequence of Sphingobium chinhatense strain IP26T isolated from the hexachlorocyclohexane dumpsite. Genome Announc 2013, 1:00680-13.
  • [54]Singh AK, Sangwan N, Sharma A, Gupta V, Khurana JP, Lal R: Draft genome sequence of Sphingobium quisquiliarum P25T, a novel hexachlorocylohexane (HCH)- degrading bacterium isolated from the HCH dumpsite. Genome Announc 2013, 1:00717-13.
  • [55]Kohi P, Dua A, Sangwan N, Oldach P, Khurana JP, Lal R: Draft genome sequence of Sphingobium ummariense strain RL-3, a hexachlorocyclohexane-degrading bacterium. Genome Announc 2013, 1:00956-13.
  • [56]Mukherjee U, Kumar R, Mahato NK, Khurana JP, Lal R: Draft genome sequence of Sphingobium sp. HDIPO4, an avid degrader of hexachlorocyclohexane. Genome Announc 2013, 1:00749-13.
  • [57]Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23:673-679.
  • [58]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  • [59]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [60]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658-1659.
  • [61]Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Fèvre FL, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Smith AAT, Weiman M, Médigue C: MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013, 41:D636-D647.
  • [62]Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35:W182-W185.
  • [63]Ye Y, Doak TG: A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput Biol 2009, 5:e1000465.
  • [64]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34:374-378.
  • [65]Langille MGI, Brinkman FSL: IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 2009, 25:664-665.
  • [66]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35:W52-W57.
  • [67]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [68]Van de Peer Y, De Wachter Y: TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Applic Biosci 1994, 10:569-570.
  • [69]Jukes TH, Cantor CR: Evolution of protein molecules,” in Munro (ed.). Mammalian Protein Metabolism 1969, 3:21-132.
  • [70]Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO: TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 2004, 5:163. BioMed Central Full Text
  • [71]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Bioland Evol 2007, 24:1596-1599.
  • [72]Pond SLK, Frost SDW, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21:676-679.
  • [73]Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the artemis comparison tool. Bioinformatics 2005, 16:3422-3433.
  • [74]Wickham H: Ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2009:213.
  • [75]Le S, Josse J, Husson F: FactoMineR: an R package for multivariate analysis. J Stat Softw 2008, 25:1-18.
  • [76]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5:12.
  文献评价指标  
  下载次数:43次 浏览次数:1次