期刊论文详细信息
BMC Evolutionary Biology
Comparative phylogeography of the plateau zokor (Eospalax baileyi) and its host-associated flea (Neopsylla paranoma) in the Qinghai-Tibet Plateau
Tongzuo Zhang2  Jianping Su2  Xiaogong Deng3  Hongjian Chen1  Fang Zhao3  Gonghua Lin2 
[1] Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China;Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;University of Chinese Academy of Sciences, Beijing 100049, China
关键词: Host switching;    Fixation index;    Population genetics;    Flea;    Zokor;   
Others  :  1118010
DOI  :  10.1186/s12862-014-0180-5
 received in 2014-05-16, accepted in 2014-08-04,  发布年份 2014
PDF
【 摘 要 】

Background

Specific host-parasite systems often embody a particular co-distribution phenomenon, in which the parasite’s phylogeographic pattern is dependent on its host. In practice, however, both congruent and incongruent phylogeographic patterns between the host and the parasite have been reported. Here, we compared the population genetics of the plateau zokor (Eospalax baileyi), a subterranean rodent, and its host-associated flea species, Neopsylla paranoma, with an aim to determine whether the two animals share a similar phylogeographic pattern.

Results

We sampled 130 host-parasite pairs from 17 localities in the Qinghai-Tibet Plateau (QTP), China, and sequenced a mitochondrial DNA (mtDNA) segment (~2,500 bp), including the complete COI and COII genes. We also detected 55 zokor and 75 flea haplotypes. AMOVA showed that the percentage of variation among the populations of zokors constituted 97.10%, while the within population variation was only 2.90%; for fleas, the values were 85.68% and 14.32%, respectively. Moreover, the flea Fst (fixation index) values were significantly smaller than in zokor. Although the Fst values between zokors and fleas were significantly and positively correlated (N =105, R =0.439, p =0.000), only a small amount (R2= 0.19) of the flea Fst variations could be explained by the zokor Fst variations. The two animals showed very distinct haplotype network structures from each other while co-phylogenetic analyses were unable to reject the hypothesis of an independence of speciation events.

Conclusions

Zokors and fleas have very distinct population genetic patterns from each other, likely due to the influence of other sympatrically-distributed vertebrates on the transmission of fleas.

【 授权许可】

   
2014 Lin et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150206015641689.pdf 1912KB PDF download
Figure 1. 16KB Image download
Figure 2. 66KB Image download
Figure 1. 161KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 1.

【 参考文献 】
  • [1]Arbogast B, Kenagy GJ: Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 2001, 28:819-825.
  • [2]Avise JC: Phylogeography: retrospect and prospect. J Biogeogr 2009, 36:3-15.
  • [3]Toon A, Hughes JM: Are lice good proxies for host history? A comparative analysis of the Australian magpie, Gymnorhina tibicen, and two species of feather louse. Heredity 2008, 101(2):127-135.
  • [4]Kholodova MV: Comparative phylogeography: molecular methods, ecological interpretation. Mol Biol 2009, 43(5):847-854.
  • [5]Nieberding C, Morand S, Libois R, Michaux JR: A parasite reveals cryptic phylogeographical history of its host. P Roy Soc B-Biol Sci 2004, 271:2559-2568.
  • [6]Bruyndonckx N, Biollaz F, Dubey S, Goudet J, Christe P: Mites as biological tags of their hosts. Mol Ecol 2010, 19(13):2770-2778.
  • [7]du Toit N, van Vuuren BJ, Matthee S, Matthee CA: Biogeography and host-related factors trump parasite life history: limited congruence among the genetic structures of specific ectoparasitic lice and their rodent hosts. Mol Ecol 2013, 22(20):5185-5204.
  • [8]Nieberding CM, Durette-Desset MC, Vanderpoorten A, Casanova JC, Ribas A, Deffontaine V, Feliu C, Morand S, Libois R, Michaux JR: Geography and host biogeography matter for understanding the phylogeography of a parasite. Mol Phylogenet Evol 2008, 47:538-554.
  • [9]Nieberding CM, Olivieri I: Parasites: proxies for host genealogy and ecology? Trends Ecol Evol 2007, 22:156-165.
  • [10]Criscione CD, Poulin R, Blouin MS: Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 2005, 14(8):2247-2257.
  • [11]Rannala B, Michalakis Y: Population genetics and cospeciation: from process to pattern. In Tangled trees: phylogeny, cospeciation and coevolution. Edited by Page RDM. University of Chicago Press, Chicago; 2003:120-143.
  • [12]Morand S, Krasnov BR, Poulin R: Micromammals and macroparasites. Springer-Verlag, Tokyo; 2006.
  • [13]Krasnov BR: Functional and evolutionary ecology of fleas - a model for ecological parasitology. Cambridge University Press, Cambridge; 2008.
  • [14]Wu HY, Liu Q, Lu L, Gong ZD, Wang DQ, Yu X, Li C, Liu JY: Fauna sinica, Insecta, Siphonaptera. Science Press, Beijing; 2007.
  • [15]Gomez-Diaz E, Gonzalez-Solis J, Peinado MA, Page RD: Lack of host-dependent genetic structure in ectoparasites of Calonectris shearwaters. Mol Ecol 2007, 16:5204-5215.
  • [16]Jones PH, Britten HB: The absence of concordant population genetic structure in the black-tailed prairie dog and the flea, Oropsylla hirsuta, with implications for the spread of Yersinia pestis. Mol Ecol 2010, 19:2038-2049.
  • [17]Cai LY, Zhan XR, Wu WZ, Li C: The Flea Fauna of Qinghai-Xizang Plateau. Shaanxi Science and Technology Publishing House, Xian; 1997.
  • [18]Zhang GD: Epidemiological survey of fleas in Qinghai Nan Mountain. Chinese J Vector Biol Control 1994, 3:186, 228.
  • [19]Zhou WY, Dou FM: Studies on activity and home range of plateau zokor. Acta Theri Sin 1990, 10(1):31-39.
  • [20]Li JJ, Li BY, Wang FB: The process of uplift of the Qinghai-Xizang Plateau. Geological and ecological studies of Qinghai-Xizang Plateau. Science Press, Beijing; 1981.
  • [21]Yang S, Dong H, Lei F: Phylogeography of regional fauna on the Tibetan Plateau: a review. Prog Nat Sci 2009, 19:789-799.
  • [22]Ci HX, Lin GH, Cai ZY, Tang LZSJP, Liu JQ: Population history of the plateau pika endemic to the Qinghai-Tibetan Plateau based on mtDNA sequence data. J Zool 2009, 279(4):396-403.
  • [23]Lopes CM, Ximenes SSF, Gava A, de Freitas TRO: The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus). Heredity 2013, 111:293-305.
  • [24]Wei WH, Wang QY, Zhou WY, Fan NC: The population dynamics and dispersal of plateau zokors after removing. Acta Their Sin 1997, 17:53-61.
  • [25]Poulin R, Krasnov BR, Shenbrot GI, Mouillot D, Khokhlova IS: Evolution of host specificity in fleas: is it directional and irreversible? Int J Parasitol 2006, 36:185-191.
  • [26]Zhang WG, Jiang XL: A study of commensalism of plateau zokor and plateau pika. Acta Prataculturae Sin 1998, 7(2):43-47.
  • [27]Smith AT, Foggin JM: The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim Conserv 1999, 2:235-240.
  • [28]Han CX, Yang XJ, Wang MC: The integrate management of forest-rodents. Northwest Sci-Tech University of Agriculture and Forestry Press, Xian; 2003.
  • [29]Sambrook J, Russell DW, Russell DW: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York; 2001.
  • [30]Whiting MF: Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool Scr 2002, 31:93-104.
  • [31]Thompson JD, Gibson TJ, Plewniak F, Mougin FJ, Higgins DG: The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 1997, 25:4876-4882.
  • [32]Librado P, Rozas J: DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [33]Excoffier LGL, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  • [34]Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27:209-220.
  • [35]Bandelt HJ, Forster P, Rohl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [36]Legendre P, Desdevises Y, Bazin E: A statistical test for host–parasite coevolution. Syst Biol 2002, 51(2):217-234.
  • [37]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [38][10.5061/dryad.d0v11] webcite Lin G, Zhao F, Chen H, Deng X, Su J, Zhang T: Comparative phylogeography of the plateau zokor (Eospalax baileyi) and its host-associated flea (Neopsylla paranoma) in the Qinghai-Tibet Plateau.Dryad Digital Repository 2014, http://dx.doi.org/.
  文献评价指标  
  下载次数:25次 浏览次数:11次