期刊论文详细信息
BMC Evolutionary Biology
Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching
Makoto Kato4  Yoichi Hamamura1  Hiroshi Ishikawa2  Atsushi Kawakita3  Ryutaro Goto5 
[1] 14-16 Yakeyama-Hibarigaoka-cho, Kure, Hiroshima, 737-0901, Japan;965-1 Kawachi-ko, Uwajima, Ehime, 798-0075, Japan;Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan;Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan;Department of Marine Ecosystem Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8564, Japan
关键词: Host switching;    Host specialization;    Symbiosis;    Parallel evolution;    Galeommatoidea;    Diversification;    Commensalism;    Bivalvia;   
Others  :  1140326
DOI  :  10.1186/1471-2148-12-172
 received in 2012-06-13, accepted in 2012-08-30,  发布年份 2012
PDF
【 摘 要 】

Background

Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes.

Results

Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea.

Conclusions

Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in which they maintain filter-feeding habits even in symbiotic habitats. The results of the molecular phylogenetic analysis did not correspond with the current taxonomic circumscription. Galeommatidae and Lasaeidae were polyphyletic, and Basterotia, which is traditionally assigned to Cyamioidea, formed a monophyletic clade within Galeommatoidea.

【 授权许可】

   
2012 Goto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324210353688.pdf 2210KB PDF download
Figure 3. 145KB Image download
Figure 2. 122KB Image download
Figure 1. 234KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Morton B: Partnerships in the sea: Hong Kong’s marine symbioses. Hong Kong: Hong Kong University Press; 1998.
  • [2]Nybbaken JW, Bertness M: Marine biology: an ecological approach. 6th edition. San Francisco: The Benjamin/Cummings Pub Co; 2004.
  • [3]Williams JD, McDermott JJ: Hermit crab biocoenoses: worldwide review of the diversity and natural history of hermit crab associates. J Exp Mar Biol Ecol 2004, 305:1-128.
  • [4]Anker A, Murina GV, Lira C, Vera Caripe JA, Palmer AR, Jeng MS: Macrofauna associated with echiuran burrows: a review with new observations of the innkeeper worm,Ochetostoma erythrogrammonLeuckart and Rüppel, in Venezuela. Zool Stud 2005, 44:157-190.
  • [5]Macdonald KS, Ríos R, Duffy JM: Biodiversity, host specificity, and dominance by eusocial species among sponge-dwelling shrimp on the Belize Barrier Reef. Divers Distrib 2006, 12:165-178.
  • [6]Duffy JE: Resource-associated population subdivision in a symbiotic coral reef shrimp. Evolution 1996, 50:360-373.
  • [7]Munday PL, van Herwerden L, Dudgeon CL: Evidence for sympatric speciation by host shift in the sea. Curr Biol 2004, 14:1498-1504.
  • [8]Faucci A, Toonen RJ, Hadfield MG: Host shift and speciation in a coral-feeding nudibranch. Proc Roy Soc B 2007, 274:111-119.
  • [9]Coyne JA, Orr HA: Speciation. Massachusetts: Sinauer Associates; 2004.
  • [10]Morton B, Prezant RS, Wilson B: Class Bivalvia. In Mollusca: The Southern Synthesis. Fauna of Australia. Volume 5. Part A. Edited by Beesely PL, Ross GJB, Wells A. Melbourne: CSIRO Publishing; 1998:195-234.
  • [11]Boss KJ: Symbiotic erycinacean bivalves. Malacologia 1965, 3:183-195.
  • [12]Morton B, Scott PH: The Hong Kong Galeommatacea (Mollusca: Bivalvia) and their hosts, with descriptions of new species. Asian Mar Biol 1989, 6:129-160.
  • [13]Savazzi E: A review of symbiosis in the Bivalvia, with special attention to macrosymbiosis. Paleontol Res 2001, 5:55-73.
  • [14]Morton B: The biology and functional morphology of Galeomma (Paralepida) takii (Bivalvia: Leptonaceae). J Zool 1973, 169:133-150.
  • [15]Lützen J, Nielsen C: Galeommatid bivalves from Phuket, Thailand. Zool J Linn Soc 2005, 144:261-306.
  • [16]Ponder WF: Superfamily Galeommatoidea. In Mollusca: The Southern Synthesis. Fauna of Australia. Volume 5. Part B. Edited by Beesely PL, Ross GJB, Wells A. Melbourne: CSIRO Publishing; 1998:316-318.
  • [17]Bieler R, Carter GJ, Coan EV: Classification of bivalve families. Malacologia 2010, 52:113-184.
  • [18]Vaught KC: A classification of the living Mollusca. Melborne: American Malacologists Incorporation; 1989.
  • [19]Kato M, Itani G: Commensalism of a bivalve, Peregrinamor ohshimai, with a thalassinidean burrowing shrimp, Upogebia major. J Mar Biol Assoc UK 1995, 75:941-947.
  • [20]Goto R, Hamamura Y, Kato M: Morphological and ecological adaptation of Basterotia bivalves (Galeommatoidea: Sportellidae) to symbiotic association with burrowing echiuran worms. Zool Sci 2011, 28:225-234.
  • [21]Huelsenbeck JP, Rannala B: Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 1994, 53:904-913.
  • [22]Suzuki Y, Glazko GV, Nei M: Overcredibility of molecular phylogenetics obtained by Bayesian phylogenetics. Proc Nat Acad Sci USA 2002, 99:16138-16143.
  • [23]Erixon P, Svennblad B, Britton T, Oxelman B: Reliability of posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 2003, 52:665-673.
  • [24]Habe T: Halcampella maxima Hertwig, host of Nopponomontacuta actinariophila Yamamoto & Habe. Venus 1973, 31:157.
  • [25]Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol 2002, 51:492-508.
  • [26]Yamashita H, Haga T, Lützen J: The bivalve Divariscintilla toyohiwakensis n. sp. (Heterodonta: Galeommatidae) from Japan, a commensal with a mantis shrimp. Venus 2011, 69:123-133.
  • [27]Lützen J, Takahashi T: Arthritica japonica, sp. nov. (Bivalvia: Galeommatoidea: Leptonidae), a commensal with the pinnotherid crab Xenophthalmus pinnotheroides White, 1846. Yuriyagai 2003, 9:11-19.
  • [28]Goto R, Hamamura Y, Kato M: Obligate commensalism of Curvemysella paula (Bivalvia: Galeommatidae) with hermit crabs. Mar Biol 2007, 151:1615-1622.
  • [29]Narchi W: On Pseudopythina rugifera (Carpenter, 1864) (Bivalvia). Veliger 1969, 12:43-52.
  • [30]Foighil D: Form, function, and origin of temporary dwarf males in Pseudopythina rugifera (Carpenter, 1864) (Bivalvia: Galeommataceae). Veliger 1985, 27:245-252.
  • [31]Kato M, Itani G: Peregrinamor gastrochaenans (Bivalvia: Mollusca), a new species symbiotic with the thalassinidean shrimp Upogebia carinicauda (Decapoda: Crustacea). Species Divers 2000, 5:309-316.
  • [32]Itani G, Kato M, Shirayama Y: Behaviour of the shrimp ectosymbionts, Peregrinamor ohshimai (Mollusca: Bivalvia) and Phyllodurus sp. (Crustacea: Isopoda) through host ecdyses. J Mar Biol Assoc UK 2002, 82:69-78.
  • [33]Kato M: Morphological and ecological adaptations in montacutid bivalves endo- and ecto-symbiotic with holothurians. Can J Zool 1998, 76:1403-1410.
  • [34]Goto R, Kato M: Geographic mosaic of mutually exclusive dominance of obligate commensals in symbiotic communities associated with a burrowing echiuran worm. Mar Biol 2012, 159:319-330.
  • [35]Habe T, Kanazawa T: A new commensal bivalve from the Philippines (Montacutidae). Venus 1981, 40:123-125.
  • [36]Lützen J, Takahashi T, Yamaguchi T: Morphology and reproduction of Nipponomysella subtruncata (Yokoyama), a galeommatoidean bivalve commensal with the sipunculan Siphonosoma cumanense (Keferstein) in Japan. J Zool 2001, 254:429-440.
  • [37]Lützen J, Kosuge T: Description of the bivalve Litigiella pacifica n. sp. (Heterodonta: Galeommatoidea: Lasaeidae), commensal with sipunculan Sipuculus nudus from the Ryukyu Islands. Japan. Venus 2006, 65:193-202.
  • [38]Ricklefs RE, Fallon SM: Diversification and host switching in avian malaria parasites. Proc Roy Soc B 2002, 269:885-892.
  • [39]Lopez-Vaamonde C, Charles H, Godfray J, Cook JM: Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 2003, 57:1804-1821.
  • [40]Hoberg EP, Brooks DR: A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host–parasite systems. J Biogeogr 2008, 35:1533-1550.
  • [41]Gómez JM, Verdú M, Perfectti F: Ecological interactions are evolutionary conserved across the entire tree. Nature 2010, 465:918-921.
  • [42]Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Jonathan DT, Grytnes J-A, Harrison SP: Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 2010, 13:1310-1324.
  • [43]Sokolov PE: An improved method for DNA isolation from mucopolysaccharide-rich molluscan tissues. J Molluscan Stud 2000, 66:573-575.
  • [44]Edgar RC: MUSCLE: multiple sequence sequence alignment with high accuracy and high throughput. Nucl Acids Res 2004, 32:1792-1797.
  • [45]Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLOWIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 1996, 12:543-548.
  • [46]Gouy M, Guindon S, Gascuel O: Seaview version 4: a multiplatform graphical user interfacre for sequence alignment and phylogenetic tree building. Molecul Biol Evol 2010, 27:221-224.
  • [47]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
  • [48]Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007, 56:564-577.
  • [49]Gblocks Server. http://molevol.cmima.csic.es/castresana/Gblocks_server.html webcite
  • [50]Jobb G: TREEFINDER available from Munich. 2007. www.treefinder.de webcite
  • [51]Jobb G, Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 2004, 4:18.
  • [52]Ronquist F, Huelsenbeck JP: MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxf) 2003, 19:1572-1574.
  • [53]Nylander JA: MrModeltest v2. Evolutionary Biology Centre: Program distributed by the author. Uppsala University; 2004.
  文献评价指标  
  下载次数:104次 浏览次数:46次