期刊论文详细信息
BMC Genomics
Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits
Qin Zhang1  Jianfeng Liu1  Xiangdong Ding1  Sang He1  Lili Liu1  Jicai Jiang1  Haifei Wang1  Jie Yang1  Xuan Liu1  Li Jiang1 
[1] National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
关键词: Targeted resequencing;    Milk production traits;    Genetic variants;   
Others  :  1127307
DOI  :  10.1186/1471-2164-15-1105
 received in 2014-06-16, accepted in 2014-12-10,  发布年份 2014
PDF
【 摘 要 】

Background

Genome wide association study (GWAS) has been proven to be a powerful tool for detecting genomic variants associated with complex traits. However, the specific genes and causal variants underlying these traits remain unclear.

Results

Here, we used target-enrichment strategy coupled with next generation sequencing technique to study target regions which were found to be associated with milk production traits in dairy cattle in our previous GWAS. Among the large amount of novel variants detected by targeted resequencing, we selected 200 SNPs for further association study in a population consisting of 2634 cows. Sixty six SNPs distributed in 53 genes were identified to be associated significantly with on milk production traits. Of the 53 genes, 26 were consistent with our previous GWAS results. We further chose 20 significant genes to analyze their mRNA expression in different tissues of lactating cows, of which 15 were specificly highly expressed in mammary gland.

Conclusions

Our study illustrates the potential for identifying causal mutations for milk production traits using target-enrichment resequencing and extends the results of GWAS by discovering new and potentially functional mutations.

【 授权许可】

   
2014 Jiang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220091727927.pdf 577KB PDF download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Hu ZL, Park CA, Wu XL, Reecy JM: Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic acids research 2013, 41(Database issue):D871-879.
  • [2]Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Maki-Tanila A, Georges M, Vilkki J: The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics 2006, 173(4):2151-2164.
  • [3]Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P, Frere JM, Coppieters W, Georges M: Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A 2004, 101(8):2398-2403.
  • [4]Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R: Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 2002, 12(2):222-231.
  • [5]Winter A, Kramer W, Werner FA, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R: Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci U S A 2002, 99(14):9300-9305.
  • [6]Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, Lee JH, Drackley JK, Band MR, Hernandez AG, Shani M, Lewin HA, Weller JI, Ron M: Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res 2005, 15(7):936-944.
  • [7]Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME: Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 2009, 92(2):433-443.
  • [8]Hayes BJ, Lewin HA, Goddard ME: The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet 2013, 29(4):206-214.
  • [9]Wiggans GR, Vanraden PM, Cooper TA: The genomic evaluation system in the United States: past, present, future. J Dairy Sci 2011, 94(6):3202-3211.
  • [10]Jiang L, Liu J, Sun D, Ma P, Ding X, Yu Y, Zhang Q: Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One 2010, 5(10):e13661.
  • [11]Mai MD, Sahana G, Christiansen FB, Guldbrandtsen B: A genome-wide association study for milk production traits in Danish Jersey cattle using a 50 K single nucleotide polymorphism chip. J Anim Sci 2010, 88(11):3522-3528.
  • [12]Pryce JE, Bolormaa S, Chamberlain AJ, Bowman PJ, Savin K, Goddard ME, Hayes BJ: A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J Dairy Sci 2010, 93(7):3331-3345.
  • [13]Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ Jr, Crooker BA, Van Tassell CP, Yang J, Wang S, Matukumalli LK, Da Y: Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics 2011, 12:408. BioMed Central Full Text
  • [14]Meredith BK, Kearney FJ, Finlay EK, Bradley DG, Fahey AG, Berry DP, Lynn DJ: Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet 2012, 13:21.
  • [15]Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S, Ellinghaus D, Burtt N, Fennell T, Kirby A, Latiano A, Goyette P, Green T, Halfvarson J, Haritunians T, Korn JM, Kuruvilla F, Lagace C, Neale B, Lo KS, Schumm P, Torkvist L, Dubinsky MC, Brant SR, Silverberg MS, Duerr RH, Altshuler D, Gabriel S, et al.: Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 2011, 43(11):1066-1073.
  • [16]Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK: High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 2010, 42(10):851-858.
  • [17]Daiger SP, Sullivan LS, Bowne SJ, Birch DG, Heckenlively JR, Pierce EA, Weinstock GM: Targeted high-throughput DNA sequencing for gene discovery in retinitis pigmentosa. Adv Exp Med Biol 2010, 664:325-331.
  • [18]Hoischen A, Gilissen C, Arts P, Wieskamp N, van der Vliet W, Vermeer S, Steehouwer M, de Vries P, Meijer R, Seiqueros J, Knoers NV, Buckley MF, Scheffer H, Veltman JA: Massively parallel sequencing of ataxia genes after array-based enrichment. Hum Mutat 2010, 31(4):494-499.
  • [19]Chou LS, Liu CS, Boese B, Zhang X, Mao R: DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model. Clin Chem 2010, 56(1):62-72.
  • [20]The cattle dbSNP. ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/cow_9913/
  • [21]Ekine CC, Rowe SJ, Bishop SC, de Koning DJ: Why breeding values estimated using familial data should not be used for genome-wide association studies. G3 (Bethesda) 2014, 4(2):341-347.
  • [22]Maxa J, Neuditschko M, Russ I, Forster M, Medugorac I: Genome-wide association mapping of milk production traits in Braunvieh cattle. J Dairy Sci 2012, 95(9):5357-5364.
  • [23]Schopen GC, Visker MH, Koks PD, Mullaart E, van Arendonk JA, Bovenhuis H: Whole-genome association study for milk protein composition in dairy cattle. J Dairy Sci 2011, 94(6):3148-3158.
  • [24]Streit M, Reinhardt F, Thaller G, Bennewitz J: Genome-wide association analysis to identify genotype x environment interaction for milk protein yield and level of somatic cell score as environmental descriptors in German Holsteins. J Dairy Sci 2013, 96(11):7318-7324.
  • [25]Li H, Wang Z, Moore SS, Schenkel FS, Stothard P: Genome-wide Scan For Positional And Functional Candidate Genes Affecting Milk Production Traits In Canadian Holstein Cattle. The 9th World Congress on Genetics Applied to Livestock Production (WCGALP) Leipzig, Germany 2010.
  • [26]Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, VanRaden PM, Ron M, Weller JI, Lewin HA: Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J Dairy Sci 2004, 87(2):468-475.
  • [27]Olsen HG, Gomez-Raya L, Vage DI, Olsaker I, Klungland H, Svendsen M, Adnoy T, Sabry A, Klemetsdal G, Schulman N, Kramer W, Thaller G, Ronningen K, Lien S: A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle. J Dairy Sci 2002, 85(11):3124-3130.
  • [28]Rahmatalla SA, Muller U, Strucken EM, Reissmann M, Brockmann GA: The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J Appl Genet 2011, 52(4):459-465.
  • [29]Raadsma HW, Khatkar MS, Moser G, Hobbs M, Crump R, Cavanagh JAL, Tier B: Genome wide association studies in dairy cattle using high dengsity SNP scans. Proc Assoc Advmt Anim Breed Genet 2010, 18:151-154.
  • [30]Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, Haymond MW: Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics 2009, 37(1):12-22.
  • [31]Pisanu S, Ghisaura S, Pagnozzi D, Falchi G, Biosa G, Tanca A, Roggio T, Uzzau S, Addis MF: Characterization of sheep milk fat globule proteins by two-dimensional polyacrylamide gel electrophoresis/mass spectrometry and generation of a reference map. International Dairy Journal 2012, 24:78-86.
  • [32]Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG: GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res 2009, 50(Suppl):S57-62.
  • [33]Davies BS, Beigneux AP, Barnes RH 2nd, Tu Y, Gin P, Weinstein MM, Nobumori C, Nyren R, Goldberg I, Olivecrona G, Bensadoun A, Young SG, Fong LG: GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab 2010, 12(1):42-52.
  • [34]Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, Peelman F, Kastelein JJ, Peterfy M, Nieuwdorp M: The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 2010, 211(1):1-8.
  • [35]Tewhey R, Nakano M, Wang X, Pabon-Pena C, Novak B, Giuffre A, Lin E, Happe S, Roberts DN, LeProust EM, Topol EJ, Harismendy O, Frazer KA: Enrichment of sequencing targets from the human genome by solution hybridization. Genome Biol 2009, 10(10):R116. BioMed Central Full Text
  • [36]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.
  • [37]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [38]Gabriel S, Ziaugra L, Tabbaa D: SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 2009, Chapter 2(Unit 2):12.
  • [39]Browning BL, Browning SR: A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009, 84(2):210-223.
  文献评价指标  
  下载次数:4次 浏览次数:5次