期刊论文详细信息
BMC Microbiology
Insights into the CRISPR/Cas system of Gardnerella vaginalis
Aurelija Zvirbliene1  Milda Zilnyte1  Milda Pleckaityte1 
[1] Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius, LT-02241, Lithuania
关键词: PAM;    Repeat;    Spacer;    CRISPR/Cas;    Bacterial vaginosis;    Gardnerella vaginalis;   
Others  :  1144670
DOI  :  10.1186/1471-2180-12-301
 received in 2012-10-04, accepted in 2012-12-18,  发布年份 2012
PDF
【 摘 要 】

Background

Gardnerella vaginalis is identified as the predominant colonist of the vaginal tracts of women diagnosed with bacterial vaginosis (BV). G. vaginalis can be isolated from healthy women, and an asymptomatic BV state is also recognised. The association of G. vaginalis with different clinical phenotypes could be explained by different cytotoxicity of the strains, presumably based on disparate gene content. The contribution of horizontal gene transfer to shaping the genomes of G. vaginalis is acknowledged. The CRISPR loci of the recently discovered CRISPR/Cas microbial defence system provide a historical view of the exposure of prokaryotes to a variety of foreign genetic elements.

Results

The CRISPR/Cas loci were analysed using available sequence data from three G. vaginalis complete genomes and 18 G. vaginalis draft genomes in the NCBI database, as well as PCR amplicons of the genomic DNA of 17 clinical isolates. The cas genes in the CRISPR/Cas loci of G. vaginalis belong to the E. coli subtype. Approximately 20% of the spacers had matches in the GenBank database. Sequence analysis of the CRISPR arrays revealed that nearly half of the spacers matched G. vaginalis chromosomal sequences. The spacers that matched G. vaginalis chromosomal sequences were determined to not be self-targeting and were presumably neither constituents of mobile-element-associated genes nor derived from plasmids/viruses. The protospacers targeted by these spacers displayed conserved protospacer-adjacent motifs.

Conclusions

The CRISPR/Cas system has been identified in about one half of the analysed G. vaginalis strains. Our analysis of CRISPR sequences did not reveal a potential link between their presence and the virulence of the G. vaginalis strains. Based on the origins of the spacers found in the G. vaginalis CRISPR arrays, we hypothesise that the transfer of genetic material among G. vaginalis strains could be regulated by the CRISPR/Cas mechanism. The present study is the first attempt to determine and analyse the CRISPR loci of bacteria isolated from the human vaginal tract.

【 授权许可】

   
2012 Pleckaityte et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330222217401.pdf 855KB PDF download
Figure 5. 42KB Image download
Figure 4. 75KB Image download
Figure 3. 99KB Image download
Figure 1. 41KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 1.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Catlin BW: Gardnerella vaginalis: characteristics, clinical considerations, and controversies. Clin Microbiol Rev 1992, 5:213-237.
  • [2]Menard JP, Mazouni C, Salem-Cherif I, Fenollar F, Raoult D, Boubli L, Gamerre M, Bretelle F: High vaginal concentrations of Atopobium vaginae and Gardnerella vaginalis in women undergoing preterm labor. Obstet Gynecol 2010, 115:134-140.
  • [3]Ferhers K, Twin J, Fowkes FJ, Garland SM, Fehler G, Morton AM, Hocking JS, Tabrizi SN, Bradshaw CS: Bacterial vaginosis (BV) candidate bacteria: associations with BV and behavioural practices in sexually-experienced and inexperienced women. PLoS One 2012, 7:e30633.
  • [4]Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS: Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS 2008, 22:1493-1501.
  • [5]Fredricks DN, Fiedler TL, Thomas KK, Oakley BB, Marazzo JM: Targeted PCR of vaginal bacteria associated with bacterial vaginosis. J Clin Microbiol 2007, 45:3270-3276.
  • [6]Turovskiy Y, Sutyak Noll K, Chikindas ML: The aetiology of bacterial vaginosis. J Appl Microbiol 2011, 110:1105-1128.
  • [7]Workowski KA, Berman SM: Centers for disease control and prevention sexually transmitted disease treatment guidelines. Clin Infect Dis 2011, 53:S59-S63.
  • [8]Leitich H, Kiss H: Asymptomatic bacterial vaginosis and intermediate flora as risk factors for adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2007, 21:375-390.
  • [9]Kim TK, Thomas SM, Ho M, Sharma S, Reich CI, Frank JA, Yeater KM, Biggs DR, Nakamura N, Stmpf R, Leigh SR, Tapping RI, Blanke SR, Slauch JM, Gaskins HR, Weisbaum JS, Olsen GJ, Hoyer LL, Wilson BA: Heterogeneity of vaginal microbial communities within individuals. J Clin Microbiol 2009, 47:1181-1189.
  • [10]Zozaya-Hinchliffe M, Martin DH, Ferris MJ: Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis. J Clin Microbiol 2010, 48:1812-1819.
  • [11]Srinivasan S, Liu C, Mitchell CM, Fiedler TL, Thomas KK, Agnew KJ, Marazzo JM, Fredricks DN: Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PLoS One 2010, 5:e10197.
  • [12]Lamont RF, Sobel JD, Akins RA, Hassan SS, Chaiworapsonga T, Kusanovic JP, Romero R: The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG 2011, 118:533-549.
  • [13]Forney LJ, Foster JA, Ledger W: The vaginal flora of healthy women is not always dominated by Lactobacillus species. J Infect Dis 2006, 194:1468-1469.
  • [14]Harwich MD Jr, Alves JM, Buck GA, Strauss JF, Patterson JL, Oki AT, Girerd PH, Jefferson KK: Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies. BMC Genomics 2010, 11:375. BioMed Central Full Text
  • [15]Yeoman CJ, Yildirim S, Thomas SM, Durkin AS, Torralba M, Sutton G, Buhay CJ, Ding Y, Duhan-Rocha SP, Muzny DM, Qin X, Gibbs RA, Leigh SR, Stumpf R, White BA, Highlander SK, Nelson KE, Wilson BA: Comparative genomics of Gardnerella vaginalis strains reveals substantial differences in metabolic and virulence potential. PLoS One 2010, 5:e12411.
  • [16]Patterson JL, Stull-Lane A, Girerd PH, Jefferson KK: Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial vaginosis-associated anaerobes. Microbiology 2010, 156:392-399.
  • [17]Santiago GL, Deschaght P, El Aila N, Kiama TN, Verstraelen H, Jefferson KK, Temmerman M, Vaneechoutte M: Gardnerella vaginalis comprises three genotypes of which two produce sialidase. Am J Obstet Gynecol 2011, 204:450 e1-7.
  • [18]Pleckaityte M, Janulaitiene M, Lasickiene R, Zvirbliene A: Genetic and biochemical diversity of Gardnerella vaginalis strains isolated from women with bacterial vaginosis. FEMS Immunol Med Microbiol 2012, 65:69-77.
  • [19]Wu SR, Hillier SL, Nath K: Genomic DNA fingerprint analysis of biotype 1 Gardnerella vaginalis from patients with and without bacterial vaginosis. J Clin Microbiol 1996, 34:192-195.
  • [20]Ingianni A, Petruzzelli S, Morandotti G, Pompei R: Genotypic differentiation of Gardnerella vaginalis by amplified ribosomal DNA restriction analysis (ARDRA). FEMS Immunol Med Microbiol 1997, 18:61-66.
  • [21]Aroutcheva AA, Simoes JA, Behbakht K, Faro S: Gardnerella vaginalis isolated from patients with bacterial vaginosis and from patients with healthy vaginal ecosystems. Clin Infect Dis 2001, 33:1022-1027.
  • [22]Ahmed A, Earl J, Retchless A, Hillier SL, Rabe LK, Cherpes TL, Powell E, Janto B, Eutsey R, Hiller NL, Boissy R, Dahlgren ME, Hall BG, Costerton JW, Post JC, Hu FZ, Ehrlich GD: Comparative genomic analyses of seventeen clinical isolates of Gardnerella vaginalis provides evidence of multiple genetically isolated clades consistent with sub-speciation into genovars. J Bacteriol 2012, 194:3922-3937.
  • [23]Horvath P, Barrangou R: CRISPR/Cas, the immune system of bacteria and archaea.   2010, 327:167-170.
  • [24]Grissa I, Vergnaud G, Pourcel C: The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 2007, 8:172-182. BioMed Central Full Text
  • [25]Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-1712.
  • [26]Marraffini LA, Sontheimer EJ: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322:1843-1845.
  • [27]Marraffini LA: Impact of CRISPR immunity on the emergence of bacterial pathogens. Future Microbiol 2012, 5:693-695.
  • [28]Karginov FV, Hannon GJ: The CRISPR system: small RNA-guided defence in bacteria and archaea. Mol Cell 2010, 37:7-19.
  • [29]Rezzonico F, Smits TH, Duffy B: Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl Environ Microbiol 2011, 77:3819-3829.
  • [30]Barrangou R, Horvath P: CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 2012, 3:143-162.
  • [31]Brüggemann H, Lomholt HB, Tettelin H, Kilian M: CRISPR/cas loci of type II Propionibacterium acnes confer immunity against acquisition of mobile elements present in type I P. acnes. PLoS One 2012, 7:e34171.
  • [32]Rho M, Wu YW, Tang H, Doak TG, Ye Y: Diverse CRISPR evolving in human microbiomes. PLoS Genet 2012, 8:e1002441.
  • [33]Katoh K, Asimenos G, Toh H: Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 2009, 537:39-64.
  • [34]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190.
  • [35]Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV: Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011, 9:467-477.
  • [36]Hofacker I: Vienna RNA secondary structure server. Nucleic Acids Res 2003, 31:3429-3431.
  • [37]Weinberger AD, Sun CL, Pluciński MM, Denef VJ, Thomas BC, Horvath P, Barrangou R, Gilmore MS, Getz WM, Banfield JF: Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput Biol 2012, 8:e1002475.
  • [38]Horvath P, Romero DA, Coûtè-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R: Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 2008, 190:1401-1412.
  • [39]Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V: The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011, 39:9275-9282.
  • [40]Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJ, Severinov K: Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA 2011, 108:10098-10103.
  • [41]Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C: Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009, 155:733-740.
  • [42]Swarts DC, Mosterd C, van Passel MW, Brouns SJ: CRISPR interference directs strand specific acquisition. PLoS One 2012, 7:e35888.
  • [43]Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA: CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 2012, 12:177-186.
  • [44]Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJ: Diversity of CRISPR loci in Escherichia coli. Microbiology 2010, 156:1351-1361.
  • [45]Touchon M, Rocha EP: The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS One 2010, 5:e11126.
  • [46]Stern A, Keren L, Wurtzel O, Amitai G, Sorek R: Self-targeting by CRISPR: gene regulation or autoimmunity. Trends Genet 2010, 26:335-340.
  • [47]Goren MG, Yosef I, Auster O, Qimron U: Experimental definition of a clustered regularly interspaced short palindromic duplicon in Escherichia coli. J Mol Biol 2012, 423:14-16.
  • [48]Brodt A, Lurie-Weinberger MN, Gophna U: CRISPR loci reveal networks of gene exchange in archaea. Biol Direct 2011, 6:65. BioMed Central Full Text
  • [49]Bateman A, Rawlings ND: The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 2003, 28:234-237.
  • [50]Kjos M, Snipen L, Salehian Z, Nes IF, Diep DB: The Abi proteins and their involvement in bacteriocin self-immunity. J Bacteriol 2010, 192:2068-2076.
  • [51]Teixeira GS, Soares-Brandão KL, Branco KM, Sampaio JL, Nardi RM, Mendonça M, Almeida RB, Farias LM, Carvalho MA, Nicoli JR: Antagonism and synergism in Gardnerella vaginalis strains isolated from women with bacterial vaginosis. J Med Microbiol 2010, 59:891-897.
  • [52]Piot P, van Dyke E, Peeters M, Hale J, Totten PA, Holmes KK: Biotypes of Gardnerella vaginalis. J Clin Microbiol 1984, 20:667-679.
  • [53]Vestergaard AL, Knudsen UB, Munk T, Rosbach H, Bialasiewicz S, Sloots TP, Martensen PM, Antonsson A: Low prevalence of DNA viruses in the human endometrium and endometriosis. Arch Virol 2010, 155:693-703.
  • [54]Marazzo JM, Fiedler TL, Srinivasan S, Thomas KK, Liu C, Ko D, Xie H, Saracino M, Fredricks DN: Extravaginal reservoirs of vaginal bacteria as risk factors for incident bacterial vaginosis. J Infect Dis 2012, 205:1580-1588.
  • [55]Palmer KL, Gilmore MS: Multidrug-resistant enterococci lack CRISPR-cas. mBio 2010, 1:e00227-10.
  • [56]Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE, Ferguson-Noel N, Tsai P, Rodrigo A, Edwards S: Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet 2012, 8:e1002511.
  • [57]Gasiunas G, Barrangou R, Horvath P, Siksnys V: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Sci USA 2012, 109:E2579-E2586.
  文献评价指标  
  下载次数:23次 浏览次数:14次