期刊论文详细信息
BMC Medical Genomics
Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era
Johann E Gudjonsson1  Andrew Johnston1  James T Elder1  John J Voorhees1  Mrinal K Sarkar1  Philip E Stuart1  William R Swindell1 
[1] Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200, USA
关键词: Transcription factor;    TNFRSF9;    Neutrophil;    Microarray;    Keratinocyte;    GWAS;    Fibroblast;    AP-1;   
Others  :  797021
DOI  :  10.1186/1755-8794-7-27
 received in 2013-11-03, accepted in 2014-05-16,  发布年份 2014
PDF
【 摘 要 】

Background

Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings.

Methods

We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding.

Results

Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4.

Conclusions

These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci.

【 授权许可】

   
2014 Swindell et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706025134231.pdf 2231KB PDF download
Figure 8. 247KB Image download
Figure 7. 211KB Image download
Figure 6. 181KB Image download
Figure 5. 192KB Image download
Figure 4. 127KB Image download
Figure 3. 135KB Image download
Figure 2. 273KB Image download
Figure 1. 209KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Capon F, Burden AD, Trembath RC, Barker JN: Psoriasis and other complex trait dermatoses: from Loci to functional pathways. J Invest Dermatol 2012, 132:915-922.
  • [2]Elder JT, Bruce AT, Gudjonsson JE, Johnston A, Stuart PE, Tejasvi T, Voorhees JJ, Abecasis GR, Nair RP: Molecular dissection of psoriasis: integrating genetics and biology. J Invest Dermatol 2010, 130:1213-1226.
  • [3]Swindell WR, Johnston A, Voorhees JJ, Elder JT, Gudjonsson JE: Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. BMC Genomics 2013, 14:527. BioMed Central Full Text
  • [4]Tian S, Krueger JG, Li K, Jabbari A, Brodmerkel C, Lowes MA, Suárez-Fariñas M: Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS One 2012, 7:e44274.
  • [5]Bachelez H, Viguier M, Tebbey PW, Lowes M, Suárez-Fariñas M, Costanzo A, Nestle FO: The mechanistic basis for psoriasis immunopathogenesis: translating genotype to phenotype. Report of a workshop, Venice, 2012. Br J Dermatol 2013, 169:283-286.
  • [6]Swindell WR, Xing X, Stuart PE, Chen CS, Aphale A, Nair RP, Voorhees JJ, Elder JT, Johnston A, Gudjonsson JE: Heterogeneity of inflammatory and cytokine networks in chronic plaque psoriasis. PLoS One 2012, 7:e34594.
  • [7]Hu X, Kim H, Stahl E, Plenge R, Daly M, Raychaudhuri S: Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am J Hum Genet 2011, 89:496-506.
  • [8]Stranger BE, De Jager PL: Coordinating GWAS results with gene expression in a systems immunologic paradigm in autoimmunity. Curr Opin Immunol 2012, 24:544-551.
  • [9]Bowcock AM, Krueger JG: Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol 2005, 5:699-711.
  • [10]Nickoloff BJ: Skin innate immune system in psoriasis: friend or foe? J Clin Invest 1999, 104:1161-1164.
  • [11]Bergboer JG, Zeeuwen PL, Schalkwijk J: Genetics of psoriasis: evidence for epistatic interaction between skin barrier abnormalities and immune deviation. J Invest Dermatol 2012, 132:2320-2321.
  • [12]Wolf R, Orion E, Ruocco E, Ruocco V: Abnormal epidermal barrier in the pathogenesis of psoriasis. Clin Dermatol 2012, 30:323-328.
  • [13]Roberson ED, Bowcock AM: Psoriasis genetics: breaking the barrier. Trends Genet 2010, 26:415-423.
  • [14]Bos JD, de Rie MA, Teunissen MB, Piskin G: Psoriasis: dysregulation of innate immunity. Br J Dermatol 2005, 152:1098-1107.
  • [15]Farber EM: History of the treatment of psoriasis. J Am Acad Dermatol 1992, 27:640-645.
  • [16]Gruber F, Kastelan M, Brajac I: Psoriasis treatment–yesterday, today, and tomorrow. Acta Dermatovenerol Croat 2004, 12:30-34.
  • [17]Ellis CN, Gorsulowsky DC, Hamilton TA, Billings JK, Brown MD, Headington JT, Cooper KD, Baadsgaard O, Duell EA, Annesley TM, Turcotte JG, Voorhees JJ: Cyclosporine improves psoriasis in a double-blind study. JAMA 1986, 256:3110-3116.
  • [18]Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Roman M, Abad-Santos F: Genetics of Psoriasis and Pharmacogenetics of Biological Drugs. Autoimmune Dis 2013, 2013:613086.
  • [19]Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO: Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med 2004, 199:731-736.
  • [20]Brajac I, Kastelan M, Prpić-Massari L, Perisa D, Loncarek K, Malnar D: Melanocyte as a possible key cell in the pathogenesis of psoriasis vulgaris. Med Hypotheses 2009, 73:254-256.
  • [21]Sweeney CM, Tobin AM, Kirby B: Innate immunity in the pathogenesis of psoriasis. Arch Dermatol Res 2011, 303:691-705.
  • [22]Fuentes-Duculan J, Suárez-Fariñas M, Zaba LC, Nograles KE, Pierson KC, Mitsui H, Pensabene CA, Kzhyshkowska J, Krueger JG, Lowes MA: A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol 2010, 130:2412-2422.
  • [23]Batista MD, Ho EL, Kuebler PJ, Milush JM, Lanier LL, Kallas EG, York VA, Chang D, Liao W, Unemori P, Leslie KS, Maurer T, Nixon DF: Skewed distribution of natural killer cells in psoriasis skin lesions. Exp Dermatol 2013, 22:64-66.
  • [24]Terui T, Ozawa M, Tagami H: Role of neutrophils in induction of acute inflammation in T-cell-mediated immune dermatosis, psoriasis: a neutrophil-associated inflammation-boosting loop. Exp Dermatol 2000, 9:1-10.
  • [25]Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, et al.: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491:119-124.
  • [26]Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, Ding J, Li Y, Tejasvi T, Gudjonsson JE, Kang HM, Allen MH, McManus R, Novelli G, Samuelsson L, Schalkwijk J, Ståhle M, Burden AD, Smith CH, Cork MJ, Estivill X, Bowcock AM, Krueger GG, Weger W, Worthington J, Tazi-Ahnini R, Nestle FO, Hayday A, Hoffmann P, Winkelmann J, et al.: Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012, 44:1341-1348.
  • [27]Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ, Ruether A, Schreiber S, Weichenthal M, Gladman D, Rahman P, Schrodi SJ, Prahalad S, Guthery SL, Fischer J, Liao W, Kwok PY, Menter A, Lathrop GM, Wise CA, Begovich AB, Voorhees JJ, Elder JT, Krueger GG, Bowcock AM, Abecasis GR, et al.: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009, 41:199-204.
  • [28]Yao Y, Richman L, Morehouse C, de los Reyes M, Higgs BW, Boutrin A, White B, Coyle A, Krueger J, Kiener PA, Jallal B: Type I interferon: potential therapeutic target for psoriasis? PLoS One 2008, 3:e2737.
  • [29]Suárez-Fariñas M, Li K, Fuentes-Duculan J, Hayden K, Brodmerkel C, Krueger JG: Expanding the Psoriasis Disease Profile: Interrogation of the Skin and Serum of Patients with Moderate-to-Severe Psoriasis. J Invest Dermatol 2012, 132:2552-2564.
  • [30]Bigler J, Rand HA, Kerkof K, Timour M, Russell CB: Cross-study homogeneity of psoriasis gene expression in skin across a large expression range. PLoS One 2013, 8:e52242.
  • [31]Johnston A, Guzman AM, Swindell WR, Wang F, Kang S, Gudjonsson JE: Early tissue responses in psoriasis to the anti-TNF-α biologic etanercept suggest reduced IL-17R expression and signalling. Br J Dermatol 2014. In Press
  • [32]Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009, 106:9362-9367.
  • [33]Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ: A navigator for human genome epidemiology. Nat Genet 2008, 40:124-125.
  • [34]Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, Qu K, Zheng GX, Chow J, Kim GE, Rinn JL, Chang HY, Siprashvili Z, Khavari PA: Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 2012, 26:338-343.
  • [35]Zarnegar BJ, Webster DE, Lopez-Pajares V, Vander Stoep Hunt B, Qu K, Yan KJ, Berk DR, Sen GL, Khavari PA: Genomic profiling of a human organotypic model of AEC syndrome reveals ZNF750 as an essential downstream target of mutant TP63. Am J Hum Genet 2012, 91:435-443.
  • [36]Hopkin AS, Gordon W, Klein RH, Espitia F, Daily K, Zeller M, Baldi P, Andersen B: GRHL3/GET1 and trithorax group members collaborate to activate the epidermal progenitor differentiation program. PLoS Genet 2012, 8:e1002829.
  • [37]Roberson ED, Liu Y, Ryan C, Joyce CE, Duan S, Cao L, Martin A, Liao W, Menter A, Bowcock AM: A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol 2012, 132:583-592.
  • [38]Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, Smeekens SP: Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 2002, 18:1593-1599.
  • [39]Sakurai D, Zhao J, Deng Y, Kelly JA, Brown EE, Harley JB, Bae SC, Alarcόn-Riquelme ME, Edberg JC, Kimberly RP, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Alarcón GS, Kaufman KM, Vyse TJ, Jacob CO, Gaffney PM, Sivils KM, James JA, Kamen DL, Gilkeson GS, Niewold TB, Merrill JT, Scofield RH, Criswell LA, Stevens AM, Boackle SA, BIOLUPUS and GENLES networks, et al.: Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression. PLoS Genet 2013, 9:e1003870.
  • [40]Syddall CM, Reynard LN, Young DA, Loughlin J: The identification of trans-acting factors that regulate the expression of GDF5 via the osteoarthritis susceptibility SNP rs143383. PLoS Genet 2013, 9:e1003557.
  • [41]Butter F, Davison L, Viturawong T, Scheibe M, Vermeulen M, Todd JA, Mann M: Proteome-wide analysis of disease-associated SNPs that show allele-specific transcription factor binding. PLoS Genet 2012, 8:e1002982.
  • [42]Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, Ding J, Stuart PE, Xing X, Kochkodan JJ, Voorhees JJ, Kang HM2, Nair RP, Abecasis GR, Elder JT: Transcriptome Analysis of Psoriasis in A Large Case–control Sample: Rna-Seq Provides Insights Into Disease Mechanisms. J Invest DermatolIn Press
  • [43]Heidenreich R, Röcken M, Ghoreschi K: Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 2009, 90:232-248.
  • [44]Prens EP, Benne K, van Damme J, Bakkus M, Brakel K, Benner R, van Joost T: Interleukin-1 and interleukin-6 in psoriasis. J Invest Dermatol 1990, 95:121S-124S.
  • [45]Konstantinova NV, Duong DM, Remenyik E, Hazarika P, Chuang A, Duvic M: Interleukin-8 is induced in skin equivalents and is highest in those derived from psoriatic fibroblasts. J Invest Dermatol 1996, 107:615-621.
  • [46]Werner S, Smola H: Paracrine regulation of keratinocyte proliferation and differentiation. Trends Cell Biol 2001, 11:143-146.
  • [47]Mitsui H, Suárez-Fariñas M, Belkin DA, Levenkova N, Fuentes-Duculan J, Coats I, Fujita H, Krueger JG: Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J Invest Dermatol 2012, 132:1615-1626.
  • [48]Di Meglio P, Perera GK, Nestle FO: The multitasking organ: recent insights into skin immune function. Immunity 2011, 35:857-869.
  • [49]Christophers E, Metzler G, Röcken M: Bimodal immune activation in psoriasis. Br J Dermatol 2014, 170:59-65.
  • [50]van de Kerkhof PC, Lammers AM: Intraepidermal accumulation of polymorphonuclear leukocytes in chronic stable plaque psoriasis. Dermatologica 1987, 174:224-227.
  • [51]Toichi E, Tachibana T, Furukawa F: Rapid improvement of psoriasis vulgaris during drug-induced agranulocytosis. J Am Acad Dermatol 2000, 43:391-395.
  • [52]Dahl KB, Nyfors A, Brodthagen H: Decrease in neutrophils observed in vivo in psoriatics after PUVA therapy. Arch Dermatol Res 1978, 262:131-134.
  • [53]Sakanoue M, Takeda K, Kawai K, Kanekura T: Granulocyte and monocyte adsorption apheresis for refractory skin diseases due to activated neutrophils, psoriasis, and associated arthropathy. Ther Apher Dial 2013, 17:477-483.
  • [54]Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, Villanueva EC, Shah P, Kaplan MJ, Bruce AT: Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 2011, 187:490-500.
  • [55]Guérard S, Allaeys I, Martin G, Pouliot R, Poubelle PE: Psoriatic keratinocytes prime neutrophils for an overproduction of superoxide anions. Arch Dermatol Res 2013, 305:879-889.
  • [56]Rahmoun M, Molès JP, Pedretti N, Mathieu M, Fremaux I, Raison-Peyron N, Lecron JC, Yssel H, Pène J: Cytokine-induced CEACAM1 expression on keratinocytes is characteristic for psoriatic skin and contributes to a prolonged lifespan of neutrophils. J Invest Dermatol 2009, 129:671-681.
  • [57]Mudzinski SP, Christian TP, Guo TL, Cirenza E, Hazlett KR, Gosselin EJ: Expression of HLA-DR (major histocompatibility complex class II) on neutrophils from patients treated with granulocyte-macrophage colony-stimulating factor for mobilization of stem cells. Blood 1995, 86:2452-2453.
  • [58]Reinisch W, Tillinger W, Lichtenberger C, Gangl A, Willheim M, Scheiner O, Steger G: In vivo induction of HLA-DR on human neutrophils in patients treated with interferon-gamma. Blood 1996, 87:3068.
  • [59]Gosselin EJ, Wardwell K, Rigby WF, Guyre PM: Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. J Immunol 1993, 151:1482-1490.
  • [60]Skrzeczynska-Moncznik J, Wlodarczyk A, Zabieglo K, Kapinska-Mrowiecka M, Marewicz E, Dubin A, Potempa J, Cichy J: Secretory leukocyte proteinase inhibitor-competent DNA deposits are potent stimulators of plasmacytoid dendritic cells: implication for psoriasis. J Immunol 2012, 189:1611-1617.
  • [61]Knight JS, Carmona-Rivera C, Kaplan MJ: Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 2012, 3:380.
  • [62]Radic M, Marion TN: Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity. Semin Immunopathol 2013, 35:465-480.
  • [63]Coto E, Santos-Juanes J, Coto-Segura P, Alvarez V: New psoriasis susceptibility genes: momentum for skin-barrier disruption. J Invest Dermatol 2011, 131:1003-1005.
  • [64]Dixit E, Kagan JC: Intracellular pathogen detection by RIG-I-like receptors. Adv Immunol 2013, 117:99-125.
  • [65]Swindell WR, Johnston A, Xing X, Voorhees JJ, Elder JT, Gudjonsson JE: Modulation of epidermal transcription circuits in psoriasis: New links between inflammation and hyperproliferation. PLoS One 2013, 8:e79253.
  • [66]Kalali BN, Köllisch G, Mages J, Müller T, Bauer S, Wagner H, Ring J, Lang R, Mempel M, Ollert M: Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling. J Immunol 2008, 181:2694-2704.
  • [67]Prens EP, Kant M, van Dijk G, van der Wel LI, Mourits S, van der Fits L: IFN-alpha enhances poly-IC responses in human keratinocytes by inducing expression of cytosolic innate RNA receptors: relevance for psoriasis. J Invest Dermatol 2008, 128:932-938.
  • [68]Tamassia N, Le Moigne V, Rossato M, Donini M, McCartney S, Calzetti F, Colonna M, Bazzoni F, Cassatella MA: Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils. J Immunol 2008, 181:6563-6573.
  • [69]Edwards SL, Beesley J, French JD, Dunning AM: Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet 2013, 93:779-797.
  • [70]Kumar V, Wijmenga C, Withoff S: From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin Immunopathol 2012, 34:567-580.
  • [71]Kim JD, Kim CH, Kwon BS: Regulation of mouse 4-1BB expression: multiple promoter usages and a splice variant. Mol Cells 2011, 31:141-149.
  • [72]Kim JO, Kim HW, Baek KM, Kang CY: NF-kappaB and AP-1 regulate activation-dependent CD137 (4-1BB) expression in T cells. FEBS Lett 2003, 541:163-170.
  • [73]Schwarz H, Blanco FJ, von Kempis J, Valbracht J, Lotz M: ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood 1996, 87:2839-2845.
  • [74]Vinay DS, Kwon BS: 4-1BB signaling beyond T cells. Cell Mol Immunol 2011, 8:281-284.
  • [75]Simon HU: Evidence for a pro-apoptotic function of CD137 in granulocytes. Swiss Med Wkly 2001, 131:455-458.
  • [76]Heinisch IV, Daigle I, Knöpfli B, Simon HU: CD137 activation abrogates granulocyte-macrophage colony-stimulating factor-mediated anti-apoptosis in neutrophils. Eur J Immunol 2000, 30:3441-3446.
  • [77]Bolstad BM, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry RA, Speed TP: Quality assessment of Affymetrix GeneChip Data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S. New York: Springer; 2005:33-47.
  • [78]Stalteri MA, Harrison AP: Interpretation of multiple probe sets mapping to the same gene in Affymetrix GeneChips. BMC Bioinformatics 2007, 8:13. BioMed Central Full Text
  • [79]Affymetrix Technical Note: Design and Performance of the GeneChip® Human Genome U133 Plus 2.0 and Human Genome U133A 2.0 Arrays. http://media.affymetrix.com/support/technical/technotes/hgu133_p2_technote.pdf webcite
  • [80]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a powerful and practical approach to multiple testing. J Roy Stat Soc B 1995, 57:289-300.
  • [81]Swindell WR, Johnston A, Xing X, Little A, Robichaud P, Voorhees JJ, Fisher G, Gudjonsson JE: Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation. Sci Rep 2013, 3:1215.
  • [82]Swindell WR, Ensrud KE, Cawthon PM, Cauley JA, Cummings SR, Miller RA, Study Of Osteoporotic Fractures Research Group: Indicators of “healthy aging” in older women (65–69 years of age). A data-mining approach based on prediction of long-term survival. BMC Geriatr 2010, 10:55.
  • [83]Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A: JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 2010, 38:D105-D110.
  • [84]Robasky K, Bulyk ML: UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 2011, 39:D124-D128.
  • [85]Spivakov M, Akhtar J, Kheradpour P, Beal K, Girardot C, Koscielny G, Herrero J, Kellis M, Furlong EE, Birney E: Analysis of variation at transcription factor binding sites in Drosophila and humans. Genome Biol 2012, 13:R49. BioMed Central Full Text
  • [86]Xie Z, Hu S, Blackshaw S, Zhu H, Qian J: hPDI: a database of experimental human protein-DNA interactions. Bioinformatics 2010, 26:287-289.
  • [87]Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006, 34:D108-D110.
  • [88]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81:559-575.
  • [89]Johnston A, Gudjonsson JE, Aphale A, Guzman AM, Stoll SW, Elder JT: EGFR and IL-1 signaling synergistically promote keratinocyte antimicrobial defenses in a differentiation-dependent manner. J Invest Dermatol 2011, 131:329-337.
  • [90]Johnston A, Xing X, Swindell WR, Kochkodan J, Riblett M, Nair RP, Stuart PE, Ding J, Voorhees JJ, Elder JT, Gudjonsson JE: Susceptibility-associated genetic variation at IL12B enhances Th1 polarization in psoriasis. Hum Mol Genet 2013, 22:1807-1815.
  文献评价指标  
  下载次数:49次 浏览次数:11次