期刊论文详细信息
BMC Genomics
Characterization of the pigmented shell-forming proteome of the common grove snail Cepaea nemoralis
Daniel John Jackson2  Karlheinz Mann1 
[1] Max Planck Institute for Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, D-82152 Martinsried, Munich, Germany;Courant Research Centre Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
关键词: Cepaea nemoralis;    Evolution;    Protein;    Shell;    Pigment;    Pulmonate;    Mollusc;    Calcification;    Biomineralization;   
Others  :  1217569
DOI  :  10.1186/1471-2164-15-249
 received in 2014-01-27, accepted in 2014-03-25,  发布年份 2014
PDF
【 摘 要 】

Background

With a diversity of pigmented shell morphotypes governed by Mendelian patterns of inheritance, the common grove snail, Cepaea nemoralis, has served as a model for evolutionary biologists and population geneticists for decades. Surprisingly, the molecular mechanisms by which C. nemoralis generates this pigmented shelled diversity, and the degree of evolutionary conservation present between molluscan shell-forming proteomes, remain unknown.

Results

Here, using next generation sequencing and high throughput proteomics, we identify and characterize the major proteinaceous components of the C. nemoralis shell, the first shell-proteome for a pulmonate mollusc. The recent availability of several marine molluscan shell-proteomes, and the dataset we report here, allow us to identify 59 evolutionarily conserved and novel shell-forming proteins. While the C. nemoralis dataset is dominated by proteins that share little to no similarity with proteins in public databases, almost half of it shares similarity with proteins present in other molluscan shells. In addition, we could not find any indication that a protein (or class of proteins) is directly associated with shell pigmentation in C. nemoralis. This is in contrast to the only other partially characterized molluscan-shell pigmentation mechanism employed by the tropical abalone Haliotis asinina.

Conclusions

The unique pulmonate shell-forming proteome that we report here reveals an abundance of both mollusc-specific and pulmonate-specific proteins, suggesting that novel coding sequences, and/or the extensive divergence of these sequences from ancestral sequences, supported the innovation of new shell types within the Conchifera. In addition, we report here the first evidence that molluscs use independently evolved mechanisms to pigment their shells. This proteome provides a solid foundation from which further studies aimed at the functional characterization of these shell-forming proteins can be conducted.

【 授权许可】

   
2014 Mann and Jackson; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707060718252.pdf 2463KB PDF download
Figure 4. 113KB Image download
Figure 3. 70KB Image download
Figure 2. 76KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Marin F, Luquet G: Molluscan shell proteins. Comptes Rendus Palevol 2004, 3:469-492.
  • [2]Wilt FH: Developmental biology meets materials science: Morphogenesis of biomineralized structures. Dev Biol 2005, 280:15-25.
  • [3]Wilt FH, Killian CE, Livingston BT: Development of calcareous skeletal elements in invertebrates. Differentiation 2003, 71:237-250.
  • [4]Jackson DJ, McDougall C, Green KM, Simpson F, Wörheide G, Degnan BM: A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 2006, 4:40. BioMed Central Full Text
  • [5]Mann K, Edsinger-Gonzales E, Mann M: In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proc Natl Acad Sci U S A 2012, 10:28.
  • [6]Marie B, Marie A, Jackson DJ, DuBost L, Degnan BM, Milet C, Marin F: Proteomic analysis of the calcified organic matrix of the tropical abalone Haliotis asinina shell. Proc Natl Acad Sci U S A 2010, 8:54.
  • [7]Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, et al.: The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490:49-54.
  • [8]Amos FF, Ponce CB, Evans JS: Formation of framework nacre polypeptide supramolecular assemblies that nucleate polymorphs. Biomacromolecules 2011, 12:1883-1890.
  • [9]Montagnani C, Marie B, Marin F, Belliard C, Riquet F, Tayalé A, Zanella-Cléon I, Fleury E, Gueguen Y, Piquemal D, Cochennec-Laureau N: Pmarg-pearlin is a matrix protein involved in nacre framework formation in the pearl oyster Pinctada margaritifera. Chembiochem 2011. doi:10.1002/cbic.201100216
  • [10]Shen X, Belcher AMB, Hansma PK, Stucky GD, Morse DEM: Molecular cloning and characterization of Lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 1997, 272:32472-32481.
  • [11]Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H: An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 2009, 325:781-908.
  • [12]Pavat C, Zanella-Cléon I, Becchi M, Medakovic D, Luquet G, Guichard N, Alcaraz G, Dommergues J-L, Serpentini A, Lebel J-M: The shell matrix of the pulmonate land snail Helix aspersa maxima. Comp Biochem Physiol B 2012, 161:303-314.
  • [13]Fisher R, Diver C: Crossing-over in the Land Snail Cepea nemoralis, L. Nature 1934, 133:834-835.
  • [14]Lang A: Fortgesetzte Vererbungsstudien. Mol Gen Genet 1911, 5:97-138.
  • [15]Lang A: Vererbungswissenschaftliche Miszellen. Mol Gen Genet 1912, 8:233-283.
  • [16]Cain AJ, King J, Sheppard P: New data on the genetics of polymorphism in the snail Cepaea nemoralis L. Genetics 1960, 45:393-411.
  • [17]Cook L: The genetics of Cepaea nemoralis. Heredity 1967, 22:397-410.
  • [18]Cain AJ, Sheppard PM: Natural selection in Cepaea. Genetics 1954, 39:89-116.
  • [19]Surmacki A, Ożarowska-Nowicka A, Rosin ZM: Color polymorphism in a land snail Cepaea nemoralis (Pulmonata: Helicidae) as viewed by potential avian predators. Naturwissenschaften 2013, 100:1-8.
  • [20]Jones JS, Leith B, Rawlings P: Polymorphism in Cepaea: a problem with too many solutions? Annu Rev Ecol Syst 1977, 8:109-143.
  • [21]Richards PM, Liu MM, Lowe N, Davey JW, Blaxter ML, Davison A: RAD-Seq derived markers flank the shell colour and banding loci of the Cepaea nemoralis supergene. Mol Ecol 2013, 22:3077-3089.
  • [22]Comfort AC: The pigmentation of molluscan shells. Biol Rev 1951, 26:285-301.
  • [23]Gysi JR, Chapman DJ: Comparative biochemistry of Haliotis pigmentation: unusual bilipeptides of Haliotis cracherodii. Comp Biochem Physiol B 1979, 63B:355-361.
  • [24]Hedegaard C, Bardeau JF, Chateigner D: Molluscan shell pigments: an in situ resonance raman study. J Molluscan Stud 2006, 72:157-162.
  • [25]Koizumi C, Nonaka J: Yellow pigments of pearl - I. carotenoid pigment in yellow nacre. Bull Jap Soc Sci Fish 1970, 36:1054-1058.
  • [26]Ramos-Silva P, Marin F, Kaandorp J, Marie B: Biomineralization toolkit: the importance of sample cleaning prior to the characterization of biomineral proteomes. Proc Natl Acad Sci U S A 2013, 110:E2144-E2146.
  • [27]Drake JL, Mass T, Haramaty L, Zelzion E, Bhattacharya D, Falkowski PG: Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci U S A 2013, 110:3788-3793.
  • [28]Shur I, Socher R, Hameiri M, Fried A, Benayahu D: Molecular and cellular characterization of SEL OB/SVEP1 in osteogenic cells in vivo and in vitro. J Cell Physiol 2006, 206:420-427.
  • [29]Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, Piquemal D, Degnan BM: Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 2010, 27:591-608.
  • [30]Marie B, Joubert C, Tayale A, Zanella-Cleon I, Belliard C, Piquemal D, Cochennec-Laureau N, Marin F, Gueguen Y, Montagnani C: Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 2012, 109:20986-20991.
  • [31]Gaume B, Denis F, Van Wormhoudt A, Huchette S, Jackson DJ, Avignon S, Auzoux-Bordenave S: Characterisation and expression of the biomineralising gene Lustrin A during shell formation of the European abalone Haliotis tuberculata. Comp Biochem Physiol B 2014, 169:1-8.
  • [32]Ranganathan S, Simpson KJ, Shaw DC, Nicholas KR: The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. J Mol Graph Model 1999, 17:106-113. 134
  • [33]Marie B, Jackson DJ, Zanella-Cléon I, Ramos-Silva P, Guichard N, Marin F: The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage specific novelties. FEBS J 2013, 280:214-232.
  • [34]Kabat AR: Predatory ecology of naticid gastropods with a review of shell boring predation. Mal Int J Malac 1990, 32:155-193.
  • [35]Caceres-Martinez J, Macias-Montes de Oca P, Vasquez-Yeomans R: Polydora sp. infestation and health of the Pacific oyster Crassostrea gigas cultured in Baja California, NW Mexico. J Shell Res 1998, 17:259-264.
  • [36]Le Cam S, Viard F: Infestation of the invasive mollusc Crepidula fornicata by the native shell borer Cliona celata: a case of high parasite load without detrimental effects. Biol Inv 2011, 13:1087-1098.
  • [37]Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U: Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 2007, 8:562-573.
  • [38]Qin Z, Kreplak L, Buehler MJ: Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS One 2009, 4:e7294.
  • [39]Kreplak L, Fudge D: Biomechanical properties of intermediate filaments: from tissues to single filaments and back. Bioessays 2007, 29:26-35.
  • [40]Marxen JC, Nimtz M, Becker W, Mann K: The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim Biophys Acta 2003, 1650:92-98.
  • [41]Marxen JC, Becker W: The organic shell matrix of the freshwater snail Biomphalaria glabrata. Comp Biochem Physiol B 1997, 118:23-33.
  • [42]Sarashina I, Yamaguchi H, Haga T, Iijima M, Chiba S, Endo K: Molecular evolution and functionally important structures of molluscan Dermatopontin: implications for the origins of molluscan shell matrix proteins. J Mol Evol 2006, 62:307-318.
  • [43]Jiao Y, Wang H, Du X, Zhao X, Wang Q, Huang R, Deng Y: Dermatopontin, a shell matrix protein gene from Pearl Oyster Pinctada Martensii, participates in Nacre Formation. Biochem Biophys Res Commun 2012, 425:679-683.
  • [44]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39:W29-W37.
  • [45]Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Cléon I, Guichard N, Miller DJ, Marin F: The skeletal proteome of the coral Acropora millepora: the evolution of calcification by cooption and domain shuffling. Mol Biol Evol 2013.
  • [46]Mann K, Poustka AJ, Mann M: In-depth, high-accuracy proteomics of sea urchin tooth matrix. Proc Natl Acad Sci U S A 2008, 6:33.
  • [47]Mann K, Poustka AJ, Mann M: The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proc Natl Acad Sci U S A 2008, 6:22.
  • [48]Peters W: Occurence of chitin in Mollusca. Comp Biochem Physiol B 1972, 41:541-550.
  • [49]Weiss I, Schönitzer V, Eichner N, Sumper M: The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain. FEBS Lett 2006, 580:1846-1852.
  • [50]Ehrlich H, Kaluzhnaya OV, Tsurkan MV, Ereskovsky A, Tabachnick KR, Ilan M, Stelling A, Galli R, Petrova OV, Nekipelov SV: First report on chitinous holdfast in sponges (Porifera). Proc R Soc B 2013, 280:20130339.
  • [51]Brunet PCJ, Carlisle DB: Chitin in Pogonophora. Nature 1958, 182:1689.
  • [52]Falini G, Fermani S: Chitin mineralization. Tissue Eng 2004, 10:1-6.
  • [53]Takano Y, Ozawa H, Crenshaw MA: Ca-ATPase and ALPase activities at the initial calcification sites of dentin and enamel in the rat incisor. Cell Tissue Res 1986, 243:91-99.
  • [54]Tambutté E, Allemand D, Mueller E, Jaubert J: A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 1996, 199:1029-1041.
  • [55]Roer RD: Mechanisms of resorption and deposition of calcium in the Carapace of the Crab Carcinus Maenas. J Exp Biol 1980, 88:205-218.
  • [56]Miyamoto H, Yano M, Miyashita T: Similarities in the structure of nacrein, the shell-matrix protein, in a bivalve and a gastropod. J Molluscan Stud 2003, 69:87-89.
  • [57]Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A: A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 1996, 93:9657-9660.
  • [58]Miyamoto H, Miyoshi F, Kohno J: The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool Sci 2005, 22:311-315.
  • [59]Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26:2460-2461.
  • [60]Wisniewski JR, Zougman A, Nagaraj N, Mann M: Universal sample preparation method for proteome analysis. Nat Meth 2009, 6:359-362.
  • [61]Rappsilber J, Mann M, Ishihama Y: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2007, 2:1896-1906.
  • [62]Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Muller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A: Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 2012, 11:O111.013698.
  • [63]Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature 2011, 473:337-342.
  • [64]Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008, 26:1367-1372.
  • [65]Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M: A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 2009, 4:698-705.
  • [66]Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M: Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteom Res 2011, 10:1794-1805.
  • [67]Neuhauser N, Michalski A, Cox J, Mann M: Expert system for computer-assisted annotation of MS/MS spectra. Mol Cell Proteomics 2012, 11:1500-1509.
  • [68]Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R: A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010, 38:W695-W699.
  • [69]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
  • [70]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-D312.
  • [71]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 2011, 8(10):785-786.
  • [72]Darzentas N: Circoletto: visualizing sequence similarity with Circos. Bioinformatics 2010, 26:2620-2621.
  • [73]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
  文献评价指标  
  下载次数:75次 浏览次数:25次