期刊论文详细信息
BMC Developmental Biology
An ancient process in a modern mollusc: early development of the shell in Lymnaea stagnalis
Daniel J Jackson1  Jennifer Hohagen1 
[1]Courant Research Centre Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077, Göttingen, Germany
关键词: Peroxidase;    Alkaline phosphatase;    Mantle;    Specification;    Development;    Evolution;    Biomineralisation;    Mollusc;    Shell;   
Others  :  1085650
DOI  :  10.1186/1471-213X-13-27
 received in 2013-04-04, accepted in 2013-07-08,  发布年份 2013
PDF
【 摘 要 】

Background

The morphological variety displayed by the molluscan shell underlies much of the evolutionary success of this phylum. However, the broad diversity of shell forms, sizes, ornamentations and functions contrasts with a deep conservation of early cell movements associated with the initiation of shell construction. This process begins during early embryogenesis with a thickening of an ectodermal, ‘dorsal’ (opposite the blastopore) population of cells, which then invaginates into the blastocoel to form the shell gland. The shell gland evaginates to form the shell field, which then expands and further differentiates to eventually become the adult shell-secreting organ commonly known as the mantle. Despite the deep conservation of the early shell forming developmental program across molluscan classes, little is known about the fine-scale cellular or molecular processes that underlie molluscan shell development.

Results

Using modern imaging techniques we provide here a description of the morphogenesis of a gastropod shell gland and shell field using the pulmonate gastropod Lymnaea stagnalis as a model. We find supporting evidence for a hypothesis of molluscan shell gland specification proposed over 60 years ago, and present histochemical assays that can be used to identify a variety of larval shell stages and distinct cell populations in whole mounts.

Conclusions

By providing a detailed spatial and temporal map of cell movements and differentiation events during early shell development in L. stagnalis we have established a platform for future work aimed at elucidation of the molecular mechanisms and regulatory networks that underlie the evo-devo of the molluscan shell.

【 授权许可】

   
2013 Hohagen and Jackson; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113175152710.pdf 5148KB PDF download
Figure 8. 43KB Image download
Figure 7. 115KB Image download
Figure 6. 75KB Image download
Figure 5. 101KB Image download
Figure 4. 76KB Image download
Figure 3. 88KB Image download
Figure 2. 149KB Image download
Figure 1. 313KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Ponder WF, Lindberg DR: Phylogeny and Evolution of the Mollusca. Berkeley: University of California Press; 2008.
  • [2]Brusca RC, Brusca GJ: Invertebrates. Sunderland: Sinauer Associates Incorporated; 2002.
  • [3]Lowenstam HA, Weiner S: On biomineralization. New York: Oxford University Press, Inc; 1989.
  • [4]Comfort A: The pigmentation of molluscan shells. Biol Rev 1951, 26:285-301.
  • [5]Meinhardt H: The Algorhithmic Beauty of Sea Shells. Berlin Heidelberg: Springer; 2009.
  • [6]Abbott RT, Dance SP: Compendium of Seashells: a Full-color Guide to More Than 4,200 of the World’s Marine Shells. El Cajon: Odyssey Publishing; 1998.
  • [7]Marin F, Luquet G, Marie B, Medakovic D: Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 2007, 80:209-276.
  • [8]Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, Piquemal D, Degnan BM: Parallel Evolution of Nacre Building Gene Sets in Molluscs. Mol Biol Evol 2010, 27:591-608.
  • [9]Marie B, Le-Roy N, Zanella-Cléon I, Becchi M, Marin F: Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus. J Mol Evol 2011, 72:531-546.
  • [10]Marie B, Jackson DJ, Ramos-Silva P, Zanella-Cléon I, Guichard N, Marin F: The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J 2013, 280:214-232.
  • [11]Kniprath E: Ontogeny of the Molluscan Shell Field: a Review. Zool Script 1981, 10:61-79.
  • [12]Haszprunar G, von-Salvini-Plawen L, Rieger RM: Larval planktotrophy - a primitive trait in the Bilateria? Acta Zool 1995, 76:141-154.
  • [13]Cather JN: Cellular Interactions in the Development of the Shell Gland of the Gastropod, Ilyanassa. J Exp Zool 1967, 166:205-223.
  • [14]Hejnol A, Martindale MQ, Henry JQ: High-resolution fate map of the snail Crepidula fornicata: The origins of ciliary bands, nervous system, and muscular elements. Dev Biol 2007, 305:63-76.
  • [15]Jackson DJ, Ellemor N, Degnan BM: Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Mar Biol 2005, 147:681-697.
  • [16]Jackson DJ, Wörheide G, Degnan BM: Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 2007, 7:160. BioMed Central Full Text
  • [17]Timmermans LPM: Studies on shell formation in molluscs. Neth. J Zool 1969, 19:63-78.
  • [18]Jacobs DK, Wray CG, Wedeen CJ, Kostriken R, DeSalle R, Staton JL, Gates RD, Lindberg DR: Molluscan engrailed expression, serial organization, and shell evolution. Evol Dev 2000, 2:340-347.
  • [19]Wanninger A, Haszprunar G: The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evol Dev 2001, 3:312-321.
  • [20]Nederbragt AJ, van-Loon AE, Dictus WJAG: Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 2002, 246:341-355.
  • [21]Hinman VF, O’Brien EK, Richards GS, Degnan BM: Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 2003, 5:508-521.
  • [22]Iijima M, Takeuchi T, Sarashina I, Endo K: Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol 2008, 218:237-251.
  • [23]Kin K, Kakoi S, Wada H: A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 2009, 329:125-166.
  • [24]Samadi L, Steiner G: Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.). Dev Gen Evol 2009, 219:523-530.
  • [25]Hashimoto N, Kurita Y, Wada H: Developmental role of dpp in the gastropod shell plate and co-option of the dpp signaling pathway in the evolution of the operculum. Dev Biol 2012, 366:367-37.
  • [26]Raven CP: Morphogenesis in Limnaea stagnalis and its disturbance by lithium. J Exp Zool 1952, 121:1-77.
  • [27]Kniprath E: Zur Ontogenese des Schalenfeldes von Lymnaea stagnalis. Dev Gen Evol 1977, 181:11-30.
  • [28]Raven CP: The Development of the Egg of Limnaea Stagnalis L. From the First Cleavage Till the Trochophore Stage, With Special Reference To Its‘ Chemical Embryology’. Arch Neer Zool 1946, 7:353-434.
  • [29]Wassnig M, Southgate PC: Embryonic and larval development of Pteria penguin (Röding, 1798)(Bivalvia: Pteriidae). J Moll Stud 2012, 78:134-141.
  • [30]Bielefeld U, Becker W: Embryonic development of the shell in Biomphalaria glabrata (Say). Int J Dev Biol 1991, 35:121-131.
  • [31]Shimizu K, Sarashina I, Kagi H, Endo K: Possible functions of Dpp in gastropod shell formation and shell coiling. Dev Genes Evol 2011, 221:59-68.
  • [32]Thomas JD, Lough AS, Lodge RW: The Chemical Ecology of Biomphalaria glabrata (Say), the Snail Host of Schistosoma mansoni Sambon: The Search for Factors in Media Conditioned by Snails which Inhibit their Growth and Reproduction. J Anat 1975, 12:421-436.
  • [33]Morrill JB: Development of the Pulmonate Gastropod, Lymnaea. In Developmental Biology of Freshwater Invertebrates. Edited by Harrison FW, Cowden RR. New York: Alan R. Liss, Inc; 1982:399-483.
  • [34]Hess O: Die Entwicklung von Exogastrulakeimen bei dem Süsswasser-Prosobranchier Bithynia tentaculata L. Dev Gen Evol 1956, 148:474-488.
  • [35]Hess O: Die Entwicklung von Halbkeimen bei dem Süsswasserpulmonaten Limnaea stagnalis L. Dev Gen Evol 1957, 150:124-145.
  • [36]Clement AC: Development of Ilyanassa following removal of the D macromere at successive cleavage stages. J Exp Zool 1962, 149:193-215.
  • [37]Collier JR, McCann-Collier M: Shell gland formation in the Ilyanassa embryo. Exp Cell Res 1964, 34:512-514.
  • [38]Labordus V, van der-Wal UP: The determination of the shell field cells during the first hour in the sixth cleavage cycle of eggs of Ilyanassa obsoleta. J Exp Zool 1986, 239:65-75.
  • [39]McCain ER: Cell interactions influence the pattern of biomineralization in the Ilyanassa obsoleta (Mollusca) embryo. Dev Dyn 1992, 195:188-200.
  • [40]Osterauer R, Marschner L, Betz O, Gerberding M, Sawasdee B, Cloetens P, Haus N, Sures B, Triebskorn R, Köhler H: Turning snails into slugs: induced body plan changes and formation of an internal shell. Evol Dev 2010, 12:474-483.
  • [41]Marschner L, Triebskorn R, Köhler H: Arresting mantle formation and redirecting embryonic shell gland tissue by platinum2+ leads to body plan modifications in Marisa cornuarietis (Gastropoda, Ampullariidae). J Morphol 2012, 273:830-841.
  • [42]Kniprath E: The functional morphology of the embryonic shell-gland in the conchiferous molluscs. Malacologia 1979, 18:549-552.
  • [43]Eyster LS: Ultrastructure of early embryonic shell formation in the opisthobranch gastropod Aeolidia papillosa. Biol Bull 1983, 165:394-408.
  • [44]Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millán JL: Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A 2002, 99:9445-9449.
  • [45]Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL: Concerted Regulation of Inorganic Pyrophosphate and Osteopontin by Akp2, Enpp1, and Ank: An Integrated Model of the Pathogenesis of Mineralization Disorders. Am J Pathol 2004, 164:1199-1209.
  文献评价指标  
  下载次数:107次 浏览次数:39次