期刊论文详细信息
BMC Genomics
Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD)
Yi-Jian Li2  Xiao-Yan Tian1  Zhi-Qiang Xia3  Jin-Ping Liu1 
[1] Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agronomy, Hainan University, Haikou 570228, Hainan Province, P. R China;Service Center of Science and Technology, Rubber Research Institute Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan Province, P. R China;The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, P. R China
关键词: Jasmonate synthesis;    Latex biosynthesis;    Transcriptome;    TPD;    Rubber tree;   
Others  :  1203909
DOI  :  10.1186/s12864-015-1562-9
 received in 2014-11-03, accepted in 2015-04-21,  发布年份 2015
PDF
【 摘 要 】

Background

Tapping panel dryness (TPD) involves in the partial or complete cessation of latex flow thus seriously affect latex production in rubber tree (Hevea brasiliensis). Numerous studies have been conducted to define its origin and nature, but the molecular nature and mechanism of TPD occurrence remains unknown. This study is committed to de novo sequencing and comparative analysis of the transcriptomes of healthy (H) and TPD-affected (T) rubber trees to identify the genes and pathways related to the TPD.

Results

Total raw reads of 34,632,012 and 35,913,020 bp were obtained from H and T library, respectively using Illumina Hiseq 2000 sequencing technology. De novo assemblies yielded 141,456 and 169,285 contigs, and 96,070 and 112,243 unigenes from H and T library, respectively.

Among 73597 genes, 22577 genes were identified as differential expressed genes between H and T library via comparative transcript profiling. A majority of genes involved in natural rubber biosynthesis and jasmonate synthesis with most potential relevance in TPD occurrence were found to be differentially expressed.

Conclusions

In TPD-affected trees, the expression of most genes related to the latex biosynthesis and jasmonate synthesis was severely inhibited and is probably the direct cause of the TPD. These new de novo transcriptome data sets provide a significant resource for the discovery of genes related to TPD and improve our understanding of the occurrence and maintainace of TPD.

【 授权许可】

   
2015 Liu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523023757949.pdf 3964KB PDF download
Figure 8. 23KB Image download
Figure 7. 31KB Image download
Figure 6. 87KB Image download
Figure 5. 68KB Image download
Figure 4. 65KB Image download
Figure 3. 53KB Image download
Figure 2. 64KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Priyadarshan PM, Gonçalves PS, Omokhafe KO. Breeding Hevea rubber. In: In Breeding plantation tree crops: tropical species . Springer, New York; 2009: p.469-522.
  • [2]Mooibroek H, Cornish K. Alternative sources of natural rubber. Appl Microbiol Biotechnol. 2000; 53:355-365.
  • [3]Chen S-C, Peng S-Q, Huang G-X, Wu K, Fu X, Chen Z. Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant Mol Biol. 2002; 51:51-58.
  • [4]Li D-J, Deng Z, Chen C-L, Xia Z-H, Wu M, He P et al.. Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol. 2010; 10:140. BioMed Central Full Text
  • [5]5.Taysum HH: Yield increase by the treatment of Hevea brasiliensis with antibiotics. Proceedings of the RRIM Planters' Conference: 19–21 July 1960; Kuala Lumpur 1960:132–138.
  • [6]Zheng GB, Chen MR. Study of the cause for brown blast disease. Chin J Trop Crops. 1982; 3:57-61.
  • [7]Soyza AG. The investigation of the occurring rule and distributing pattern of brown blast disease of rubber tree in Sri Lanka. J Rubber Res Inst Sri Lanka. 1983; 61:1-6.
  • [8]Li ZY. The relationship of brown blast of rubber trees and over exploitation. Chin J Trop Agri. 1982; 5:12-16.
  • [9]Wang CZ. The report about bark of TPD Hevea brasiliansis inoculating. Chin J Trop Agri. 1988; 11:25-30.
  • [10]Nandris D, Chrestin H, Noirot M, Nicole M, Thouvenel JC, Geiger JP. The phloem necrosis of the trunk of rubber tree in Ivory Coast. (1) Symptomatology and biochemical characteristics. Eur J For Path. 1991; 21:325-339.
  • [11]Nandris D, Thouvenel JC, Nicole M, Chrestin H, Rio B, Noirot M. The phloem necrosis of the trunk of the rubber tree in Ivory Coast. (2) Etiology of the disease. Eur J For Path. 1991; 21:340-353.
  • [12]Chrestin H. iochemical aspects of bark dryness induced by overstimulation of rubber trees with ethrel. In: In Physiology of Rubber Tree Latex . D'Auzac J, Jacob JL, Chrestin H, editors. Boca Raton: CRC Press, Florida, USA; 1989: p.431-442.
  • [13]de Fay E, Jacob JL. Symptomatological, histological and cytological aspects. In: In Physiology of Rubber Tree Latex . D'Auzac J, Jacob JL, Chrestin H, editors. CRC Press, Boca Raton; 1989: p.407-428.
  • [14]Fan SW, Yang SQ. Cause of disease and hypothesis on tapping panel dryness of Hevea brasiliensis. Chin J of Trop Crops Res. 1984; 18:43-48.
  • [15]Jacob JL, Prevot JC, Laccrotte R. Tapping panel dryness in Hevea brasiliensis. Plantations, Recherche, Développement. 1994; 2:15-21.
  • [16]Faridah Y, Siti Arija MA, Ghandimathi H. Changes in some physiological latex parameters in relation to over exploitation and onset of induced tapping panel dryness. J Nat Rubber Res. 1996; 10:182-186.
  • [17]Tupy J, Primot L. Control of carbohydrate metabolism by ethylene in latex vessels in Hevea brasiliensis in relation to rubber production. Biol Plant. 1976; 18:373-384.
  • [18]Pakianathan SW, Samsidar H, Sivakumaran S, Gomez JB. Physiological and anatomical investigation on long term ethephon-stimulated trees. J Rubber Res Inst Malaysia. 1982; 30:63-79.
  • [19]Sivakumaran S, Pakianathan S-W, Abraham PD. Continuous yield stimulation. Plausible cause of yield decline. J Rubber Res Inst Malaysia. 1984; 32:119-143.
  • [20]Tupy J. Nucleic acid in latex and production of rubber in Hevea brasiliensis. J Rubber Res Inst Malaysia. 1969; 21:468-476.
  • [21]Fan SW, Yang SQ. Tapping panel dryness induced by excessive tapping is a local senescence phenomenon. Chin J Trop Crops Res. 1995; 19:15-22.
  • [22]Zeng RZ. The relation between contents of nucleic acid and tapping panel dryness in latex from Hevea brasiliensis. Chin J Crops. 1997; 18:10-15.
  • [23]Fan XW, Yang SQ. Cause of disease and hypothesis on tapping panel dryness of Hevea brasiliensis. China J Trop Crops Res. 1994; 18:43-48.
  • [24]Xi WX, Xiao XZ. Study on peroxidase isozyme and syperoxyde dismutase isozyme of TPD hevea trees. Chin J Trop Crops. 1988; 9:31-36.
  • [25]Krishnakumar R, Cornish K, Jacob J. Rubber biosynthesis in tapping panel dryness affected Hevea trees. J Nat Rubber Res. 2001; 4:131-139.
  • [26]Chrestin H, Bangratz J, d’Auzac J, Jacob JL. Role of the lutoidic tonoplast in the senescence and degeneration of the laticifers of Hevea brasiliensis. Z Pflanzenphysiol. 1984; 114:261.
  • [27]Sookmark U, Pujade-Renaud V, Chrestin H, Lacotem R, Naiyanetr C, Seguin M et al.. Characterization of polypeptides accumulated in the latex cytosol of rubber trees affected by the tapping panel dryness syndrome. Plant Cell Physiol. 2002; 43:1323-1333.
  • [28]Darussamin A, Suharyanto S, Chaidamsari T. Change in the chemical composition and electrophoretic profile of latex and bark protein related to tapping panel dryness incidence in Hevea brasiliensis. Menara Perkebunan. 1995; 63:52-59.
  • [29]Dian K, Sangare A, Diopoh JK. Evidence for specific variations of protein pattern during tapping panel dryness condition development in Hevea brasiliensis. Plant Sci. 1995; 105:207-216.
  • [30]Lacrotte R, Gidrol X, Vichitcholchai N, Pujade-Renaud V, Narangajavana J, Chrestin H. Protein markers of tapping panel dryness. Plant Rech Dev. 1995; 2:40-45.
  • [31]Venkatachalam P, Thulaseedharan A, Raghothama K. Molecular identification and characterization of a gene associated with the onset of tapping paneldryness (TPD) syndrome in rubber tree (Hevea brasiliensis Muell.) by mRNA differential display. Mol Biotechnol. 2009; 41((1):42-52.
  • [32]Venkatachalam P, Geetha N, Priya P, Thulaseedharan A. Identification of a differentially expressed thymidine kinase gene related to tapping panel dryness syndrome in the rubber tree (Hevea brasiliensis Muell.Arg.) by random amplified polymorphic DNA screening. INT J Plant Biol. 2010; 1(1):e7.
  • [33]Venkatachalam P, Thulaseedharan A, Raghothama K. Identification of expression profiles of tapping panel dryness (TPD) associated genes from the latex of rubber tree (Hevea brasiliensis Muell. Arg.). Planta. 2007; 226(2):499-515.
  • [34]Qin B, Liu X-H, Deng Z, Li D-J. Identification of genes associated with tapping panel dryness in Hevea brasiliensis using oligonucleotide microarrays. Chin J Trop Crops. 2012; 33(2):296-301.
  • [35]Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008; 5(1):16-18.
  • [36]Rosenkranz R, Borodina T, Lehrach H, Himmelbauer H. Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics. 2008; 92:187-194.
  • [37]Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol. 2009; 25(4):195-203.
  • [38]Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10:57-63.
  • [39]Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet. 2010; 11:31-46.
  • [40]Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011; 12:87-98.
  • [41]Van Verk MC, Hickman R, Pieterse CMJ, Van Wees SCM. RNA-Seq: revelation of the messengers. Trends Plant Sci. 2013; 18:175-179.
  • [42]Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 2011; 107:1-15.
  • [43]Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM et al.. Deep sequencing-based expression analysis shows major advances in robustness, resolution and interlab portability over five microarray platforms. Nucleic Acids Res. 2008; 36:e141.
  • [44]Xiang LX, He D, Dong WR, Zhang YW, Shao JZ. Deep sequencing based transcriptome profiling analysis of bacteria-challenged lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics. 2010; 11:472. BioMed Central Full Text
  • [45]Tang Q, Ma XJ, Mo CM, Wilson IW, Song C, Zhao H et al.. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNAseq and digital gene expression analysis. BMC Genomics. 2011; 12:343. BioMed Central Full Text
  • [46]Xia Z, Xu H, Zhai J, Li D, Luo H, He C et al.. RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol. 2011; 77:299-308.
  • [47]Pootakham W, Chanprasert J, Jomchai N, Sangsrakru D, Yoocha T, Therawattanasuk K et al.. Single nucleotide polymorphism marker development in the rubber tree, Hevea brasiliensis (Euphorbiaceae). Am J Bot. 2011; 98:e337-e338.
  • [48]Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, Sraphet S, Yoocha T, Sangsrakru D et al.. Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res. 2011; 18:471-482.
  • [49]Li D, Deng Z, Qin B, Liu X, Men Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics. 2012; 13:192. BioMed Central Full Text
  • [50]Chow K-S, Mat-Isa MN, Bahari A, Ghazali A-K, Alias H, Mohd-Zainuddin Z et al.. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot. 2012; 63:1863-1871.
  • [51]Duan C, Argout X, Gébelin V, Summo M, Dufayard JF, Leclercq J et al.. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics. 2013; 14:30. BioMed Central Full Text
  • [52]Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y et al.. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics. 2013; 14:75. BioMed Central Full Text
  • [53]Gronover CS, Wahler D, Prüfer D. Natural rubber biosynthesis and physicchemical studies on plant derived latex. In: In Biotechnology of Biopolymers . Elnashar M, editor. Intech Open Acess Publishe, Croatia; 2011: p.75–-88.
  • [54]Cornish K. Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species. Nat Prod Rep. 2001; 18:182-189.
  • [55]da Costa BMT, Keasling JD, McMahan CM, Cornish K. Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray. Phytochemistry. 2006; 67:1621-1628.
  • [56]Okada K. The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci Biotechnol Biochem. 2011; 75(7):1219-25.
  • [57]Sando T, Takaoka C, Mukai Y, Yamashita A, Hattori M. Cloning and characterization of mevalonate pathway genes in natural rubber producing plant. Hevea brasiliensis. Biosci Biotechnol Biochem. 2008; 72(8):2049-2060.
  • [58]Sando T, Takeno S, Watanabe N, Okumoto H. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant. Hevea brasiliensis. Biosci Biotechnol Biochem. 2008; 72(11):2903-2917.
  • [59]Brown MS, Goldstein JL. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980; 21:505-517.
  • [60]Chang W-C, Song H, Liu H-W, Liu P-H. Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol. 2013; 17(4):571-579.
  • [61]Krishnakumar R, Sreelatha S, Thomas M, Gopalakrishnan J, Jacob J, Sethuraj MR. Biochemical composition of soft bark tissues in Hevea affected by tapping panel dryness. Indian J Nat Rubber Res. 1999; 12(1,2):92-99.
  • [62]Krishnakumar R, Annamalainathan K, Simon SP, Jacob J. Tapping panel dryness syndrome in Hevea increases dark respiration but not ATP status. Indian J Nat Rubber Res. 2001; 14(1):14-19.
  • [63]Chrestin H, Jacob JL, D’Auzac J. Biochemical basis for cessation of latex flow and occurrence of physiological bark dryness. Kuala Lumpur, Malaysia: Proceedings of the International Rubber Conference. 1985; 1985(3):20-42.
  • [64]Physiological mechanism related to latex production of Hevea brasiliensis. Buletin-Bioteknologi-Perkebunan. 1994; 1(1):23-29.
  • [65]Sethuraj MR. Present status of investigations in the Rubber Research Institute of India on panel dryness syndrome. ᅟ, Penang, Malaysia; 1989.
  • [66]Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta. 2012; 236:1351-1366.
  • [67]Suwanmanee P, Sirinupong N, Suvachittanont W: Regulation of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase and rubber biosynthesis of Hevea brasiliensis (B.H.K.) Mull. Arg. In Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches. Edited by Bach TJ, Rohmer M. Berlin/Heidelberg/New York: Springer-Verlag; 2013:315–28.
  • [68]Burnett RJ, Maldonado-Mendoza IE, McKnight TD, Nessler CL. Expression of a 3-hydroxy-3-methylglutaryl coenzyme a reductase gene from Camptotheca acuminate: Is differentially regulated by wounding and methyl Jasmonate. Plant Physiol. 1993; 103:41-48.
  • [69]Mehrjerdi MZ, Bihamta M-R. Omidi M, a Naghavi M-R, Soltanloo H, Ranjbar M: Effects of exogenous methyl jasmonate and 2-isopentenyladenine on artemisinin production and gene expression in Artemisia annua. Turk J Bot. 2013;37:499–505.
  • [70]Choi D, Bostock RM, Avdiushko S, Hildebrand DF. Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci U S A. 1994; 91(6):2329-33.
  • [71]Hao BZ, Wu JL. Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Ann Bot. 2000; 85(1):37-43.
  • [72]Shi M-J, Tian W-M. Effect on the induction of the secondary laticifer differentiation by the transportation of exogenous JA in Hevea brasiliensis. Chin J Trop Crops. 2012; 33(9):1647-1653.
  • [73]Zhang L, Xing D. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol. 2008; 49:1092-1111.
  • [74]Vanková R. Plant hormone functions in abiotic and biotic stress responses. In: In Handbook of Plant and Crop Stress, 3rd Edition. Pessarakli M, editor. CRC Press, Boca Raton, Florida; 2010: p.191-211.
  • [75]Das G, Raj S, Pothen J, Sethuraj MR, Sinha TP, Sen-Mandi S. Status of free radical and its scavenging system with stimulation in Hevea brasiliensis. Plant Physio Biochem. 1998; 25(1):47-50.
  • [76]Grabherr MG, Haas BJ, Levin JZ, Thompson DA, Amit I, Adiconis X et al.. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech. 2011; 29(7):644-52.
  • [77]Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999;138–48.
  • [78]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinforma. 2005; 21(18):3674-6.
  • [79]Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z et al.. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006; 34(Web Server issue):W293-7.
  • [80]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M et al.. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008; 36(Database issue):D480-4.
  • [81]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5(7):621-628.
  • [82]Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997; 7(10):986-95.
  • [83]Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001; 29:1165-1188.
  • [84]Li X-Y, Sun H-Y, Pei J-B, Dong Y-Y, Wang F-W, Chen H et al.. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene. 2012; 511:54-61.
  文献评价指标  
  下载次数:147次 浏览次数:20次