期刊论文详细信息
BMC Cell Biology
Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene
Beatrice YJT Yue1  John C Morrison2  Elaine C Johnson2  Ruth Zelkha1  Xiang Shen1  Tara Nguyen1  Sanja Turturro1  Hongyu Ying1 
[1] Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA;Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
关键词: Rat;    E50K mutation;    Adeno-associated type 2 viral (AAV2) vectors;    Autophagy;    Ubiquitin-proteasome pathway (UPP);    Amyotrophic lateral sclerosis;    Glaucoma;    Optineurin;   
Others  :  1211780
DOI  :  10.1186/s12860-015-0060-x
 received in 2014-12-09, accepted in 2015-04-22,  发布年份 2015
PDF
【 摘 要 】

Background

Optineurin is a gene associated with normal tension glaucoma and amyotrophic lateral sclerosis. It has been reported previously that in cultured RGC5 cells, the turnover of endogenous optineurin involves mainly the ubiquitin-proteasome pathway (UPP). When optineurin is upregulated or mutated, the UPP function is compromised as evidenced by a decreased proteasome β5 subunit (PSMB5) level and autophagy is induced for clearance of the optineurin protein.

Results

Adeno-associated type 2 viral (AAV2) vectors for green fluorescence protein (GFP) only, GFP-tagged wild-type and Glu50Lys (E50K) mutated optineurin were intravitreally injected into rats for expression in retinal ganglion cells (RGCs). Following intravitreal injections, eyes that received optineurin vectors exhibited retinal thinning, as well as RGC and axonal loss compared to GFP controls. By immunostaining and Western blotting, the level of PSMB5 and autophagic substrate degradation marker p62 was reduced, and the level of autophagic marker microtubule associated protein 1 light chain 3 (LC3) was enhanced. The UPP impairment and autophagy induction evidently occurred in vivo as in vitro. The optineurin level, RGC and axonal counts, and apoptosis in AAV2-E50K-GFP-injected rat eyes were averted to closer to normal limits after treatment with rapamycin, an autophagic enhancer.

Conclusions

The UPP function was reduced and autophagy was induced when wild-type and E50K optineurin was overexpressed in rat eyes. This study validates the in vitro findings, confirming that UPP impairment and autophagy induction also occur in vivo. In addition, rapamycin is demonstrated to clear the accumulated mutant optineurin. This agent may potentially be useful for rescuing of the adverse optineurin phenotypes in vivo.

【 授权许可】

   
2015 Ying et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150611011447670.pdf 1951KB PDF download
Figure 6. 152KB Image download
Figure 5. 56KB Image download
Figure 1. 23KB Image download
Figure 3. 59KB Image download
Figure 2. 60KB Image download
Figure 1. 149KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 1.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M et al.. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002; 295(5557):1077-9.
  • [2]Stamer WD, Acott TS. Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 2012; 23(2):135-43.
  • [3]Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: a review. Exp Eye Res. 2009; 88(4):837-44.
  • [4]Fingert JH. Primary open-angle glaucoma genes. Eye (Lond). 2011; 25(5):587-95.
  • [5]Wiggs JL. The cell and molecular biology of complex forms of glaucoma: updates on genetic, environmental, and epigenetic risk factors. Invest Ophthalmol Vis Sci. 2012; 53(5):2467-9.
  • [6]Sarfarazi M, Rezaie T. Optineurin in primary open angle glaucoma. Ophthalmol Clin North Am. 2003; 16(4):529-41.
  • [7]Hauser MA, Sena DF, Flor J, Walter J, Auguste J, Larocque-Abramson K et al.. Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States. J Glaucoma. 2006; 15(5):358-63.
  • [8]Aung T, Rezaie T, Okada K, Viswanathan AC, Child AH, Brice G et al.. Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci. 2005; 46(8):2816-22.
  • [9]Deng HX, Bigio EH, Zhai H, Fecto F, Ajroud K, Shi Y et al.. Differential involvement of optineurin in amyotrophic lateral sclerosis with or without SOD1 mutations. Arch Neurol. 2011; 68(8):1057-61.
  • [10]Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y et al.. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010; 465(7295):223-6.
  • [11]Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R et al.. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet. 2010; 42(6):520-4.
  • [12]Chung PY, Beyens G, Boonen S, Papapoulos S, Geusens P, Karperien M et al.. The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes. Hum Genet. 2010; 128(6):615-26.
  • [13]Ying H, Yue BYJT. Cellular and molecular biology of optineurin. Int Rev Cell Mol Biol. 2012; 294:223-58.
  • [14]Ying H, Shen X, Park B, Yue BYJT. Posttranslational modifications, localization, and protein interactions of optineurin, the product of a glaucoma gene. PLoS One. 2010; 5(2):e9168.
  • [15]Rezaie T, Sarfarazi M. Molecular cloning, genomic structure, and protein characterization of mouse optineurin. Genomics. 2005; 85(1):131-8.
  • [16]Chalasani ML, Balasubramanian D, Swarup G. Focus on molecules: optineurin. Exp Eye Res. 2008; 87(1):1-2.
  • [17]Nagabhushana A, Bansal M, Swarup G. Optineurin is required for CYLD-dependent inhibition of TNFα-induced NF-κB activation. PLoS One. 2011; 6(3):e17477.
  • [18]Schwamborn K, Weil R, Courtois G, Whiteside ST, Israel A. Phorbol esters and cytokines regulate the expression of the NEMO-related protein, a molecule involved in a NF-κB-independent pathway. J Biol Chem. 2000; 275(30):22780-9.
  • [19]Sudhakar C, Nagabhushana A, Jain N, Swarup G. NF-κB mediates tumor necrosis factor α-induced expression of optineurin, a negative regulator of NF-κB. PLoS One. 2009; 4(4):e5114.
  • [20]Zhu G, Wu CJ, Zhao Y, Ashwell JD. Optineurin negatively regulates TNFα-induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr Biol. 2007; 17(16):1438-43.
  • [21]Mankouri J, Fragkoudis R, Richards KH, Wetherill LF, Harris M, Kohl A et al.. Optineurin negatively regulates the induction of IFNβ in response to RNA virus infection. PLoS Pathog. 2010; 6(2):e1000778.
  • [22]Rogov VV, Suzuki H, Fiskin E, Wild P, Kniss A, Rozenknop A et al.. Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem J. 2013; 454(3):459-66.
  • [23]Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol. 2012; 14(10):1024-35.
  • [24]Liu Z, Chen P, Gao H, Gu Y, Yang J, Peng H et al.. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell. 2014; 26(1):106-20.
  • [25]Kachaner D, Filipe J, Laplantine E, Bauch A, Bennett KL, Superti-Furga G et al.. Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression. Mol Cell. 2012; 45(4):553-66.
  • [26]Kachaner D, Laplantine E, Genin P, Weil R. Optineurin: a new vision of cell division control. Cell Cycle. 2012; 11(8):1481-2.
  • [27]Au JS, Puri C, Ihrke G, Kendrick-Jones J, Buss F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol. 2007; 177(1):103-14.
  • [28]Chibalina MV, Roberts RC, Arden SD, Kendrick-Jones J, Buss F. Rab8-optineurin-myosin VI: analysis of interactions and functions in the secretory pathway. Methods Enzymol. 2008; 438:11-24.
  • [29]Hattula K, Peranen J. FIP-2, a coiled-coil protein, links huntingtin to Rab8 and modulates cellular morphogenesis. Curr Biol. 2000; 10(24):1603-6.
  • [30]Nagabhushana A, Chalasani ML, Jain N, Radha V, Rangaraj N, Balasubramanian D et al.. Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant. BMC Cell Biol. 2010; 11:4. BioMed Central Full Text
  • [31]Park B, Ying H, Shen X, Park JS, Qiu Y, Shyam R et al.. Impairment of protein trafficking upon overexpression and mutation of optineurin. PLoS One. 2010; 5(7):e11547.
  • [32]Shen X, Ying H, Qiu Y, Park JS, Shyam R, Chi ZL et al.. Processing of optineurin in neuronal cells. J Biol Chem. 2011; 286(5):3618-29.
  • [33]Caballero M, Liton PB, Challa P, Epstein DL, Gonzalez P. Effects of donor age on proteasome activity and senescence in trabecular meshwork cells. Biochem Biophys Res Commun. 2004; 323(3):1048-54.
  • [34]Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES. Overexpression of proteasome β5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem. 2005; 280(12):11840-50.
  • [35]Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010; 140(3):313-26.
  • [36]Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 2009; 452:181-97.
  • [37]Jiang P, Mizushima N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods. 2015; 75:13-8.
  • [38]Krishnamoorthy RR, Clark AF, Daudt D, Vishwanatha JK, Yorio T. A forensic path to RGC-5 cell line identification: lessons learned. Invest Ophthalmol Vis Sci. 2013; 54(8):5712-9.
  • [39]Morrison JC, Johnson E, Cepurna WO. Rat models for glaucoma research. Prog Brain Res. 2008; 173:285-301.
  • [40]Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res. 1997; 64(1):85-96.
  • [41]Castedo M, Ferri KF, Kroemer G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ. 2002; 9(2):99-100.
  • [42]Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG et al.. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004; 36(6):585-95.
  • [43]Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G et al.. Rapamycin extends life and health in C7BL/6 mice. J Gerontol A Biol Sci Med Sci. 2014; 69(2):119-30.
  • [44]Martin KR, Klein RL, Quigley HA. Gene delivery to the eye using adeno-associated viral vectors. Methods. 2002; 28(2):267-75.
  • [45]Martin KR, Quigley HA. Gene therapy for optic nerve disease. Eye (Lond). 2004; 18(11):1049-55.
  • [46]Zhou Y, Pernet V, Hauswirth WW, Di Polo A. Activation of the extracellular signal-regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in glaucoma. Mol Ther. 2005; 12(3):402-12.
  • [47]Huang C, Cen LP, Liu L, Leaver SG, Harvey AR, Cui Q et al.. Adeno-associated virus-mediated expression of growth-associated protein-43 aggravates retinal ganglion cell death in experimental chronic glaucomatous injury. Mol Vis. 2013; 19:1422-32.
  • [48]Harvey AR, Kamphuis W, Eggers R, Symons NA, Blits B, Niclou S et al.. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci. 2002; 21(1):141-57.
  • [49]Boye SE, Boye SL, Pang J, Ryals R, Everhart D, Umino Y et al.. Functional and behavioral restoration of vision by gene therapy in the guanylate cyclase-1 (GC1) knockout mouse. PLoS One. 2010; 5(6):e11306.
  • [50]Koga T, Shen X, Park JS, Qiu Y, Park BC, Shyam R et al.. Differential effects of myocilin and optineurin, two glaucoma genes, on neurite outgrowth. Am J Pathol. 2010; 176(1):343-52.
  • [51]Meng Q, Lv J, Ge H, Zhang L, Xue F, Zhu Y et al.. Overexpressed mutant optineurin(E50K) induces retinal ganglion cells apoptosis via the mitochondrial pathway. Mol Biol Rep. 2012; 39(5):5867-73.
  • [52]Turturro S, Shen X, Shyam R, Yue BY, Ying H. Effects of mutations and deletions in the human optineurin gene. Springerplus. 2014; 3:99. BioMed Central Full Text
  • [53]Park BC, Shen X, Samaraweera M, Yue BYJT. Studies of optineurin, a glaucoma gene: Golgi fragmentation and cell death from overexpression of wild-type and mutant optineurin in two ocular cell types. Am J Pathol. 2006; 169(6):1976-89.
  • [54]Agarwal N. RGC-5 cells. Invest Ophthalmol Vis Sci. 2013; 54(13):7884.
  • [55]Van Bergen NJ, Wood JP, Chidlow G, Trounce IA, Casson RJ, Ju WK et al.. Recharacterization of the RGC-5 retinal ganglion cell line. Invest Ophthalmol Vis Sci. 2009; 50(9):4267-72.
  • [56]Vittitow J, Borras T. Expression of optineurin, a glaucoma-linked gene, is influenced by elevated intraocular pressure. Biochem Biophys Res Commun. 2002; 298(1):67-74.
  • [57]Comes N, Borras T. Individual molecular response to elevated intraocular pressure in perfused postmortem human eyes. Physiol Genomics. 2009; 38(2):205-25.
  • [58]Kim SH, Munemasa Y, Kwong JM, Ahn JH, Mareninov S, Gordon LK et al.. Activation of autophagy in retinal ganglion cells. J Neurosci Res. 2008; 86(13):2943-51.
  • [59]Rodriguez-Muela N, Germain F, Marino G, Fitze PS, Boya P. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ. 2012; 19(1):162-9.
  • [60]Park HY, Kim JH, Park CK. Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. Cell Death Dis. 2012; 3:e290.
  • [61]Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans. 2013; 41(5):1103-30.
  • [62]Vafai SB, Mootha VK. A common pathway for a rare disease? Science. 2013; 342(6165):1453-4.
  • [63]Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol. 2014; 36C:79-90.
  • [64]Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014; 19(3):373-9.
  • [65]Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem. 2007; 282(8):5641-52.
  • [66]Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. α-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003; 278(27):25009-13.
  • [67]Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL et al.. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol. 2007; 3(6):331-8.
  • [68]Sarkar S. Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders. Drug Discov Today Technol. 2013; 10(1):e137-44.
  • [69]Haire SE, Pang J, Boye SL, Sokal I, Craft CM, Palczewski K et al.. Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci. 2006; 47(9):3745-53.
  • [70]McKinnon SJ, Lehman DM, Tahzib NG, Ransom NL, Reitsamer HA, Liston P et al.. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol Ther. 2002; 5(6):780-7.
  • [71]Morrison JC. Elevated intraocular pressure and optic nerve injury models in the rat. J Glaucoma. 2005; 14(4):315-7.
  • [72]Hanninen VA, Pantcheva MB, Freeman EE, Poulin NR, Grosskreutz CL. Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res. 2002; 25(6):389-95.
  • [73]Cepurna WO, Kayton RJ, Johnson EC, Morrison JC. Age related optic nerve axonal loss in adult Brown Norway rats. Exp Eye Res. 2005; 80(6):877-84.
  • [74]Morrison JC, Johnson EC, Cepurna W, Jia L. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res. 2005; 24(2):217-40.
  • [75]Shindler KS, Ventura E, Rex TS, Elliott P, Rostami A. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci. 2007; 48(8):3602-9.
  • [76]Martin KR, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D et al.. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003; 44(10):4357-65.
  • [77]Kielczewski JL, Pease ME, Quigley HA. The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci. 2005; 46(9):3188-96.
  • [78]Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci. 2007; 48(1):1-10.
  • [79]Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM et al.. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012; 335(6076):1638-43.
  文献评价指标  
  下载次数:19次 浏览次数:3次