BMC Genetics | |
Identified single-nucleotide polymorphisms and haplotypes at 16q22.1 increase diabetic nephropathy risk in Han Chinese population | |
Fuu-Jen Tsai5  Tsai-Chung Li4  Sharon LR Kardia1  Chwen-Tzuei Chang7  Jen-Hao Hsiao2  Cheng-Chieh Lin3  Fang-Yang Wu6  Ching-Chu Chen5  Li-Na Liao6  | |
[1] Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA;Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan;School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan;Department of Healthcare Administration, College of Health Science, Asia University, Taichung, Taiwan;School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan;Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan;Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan | |
关键词: Han Chinese; Haplotype; Single-nucleotide polymorphism; Diabetic nephropathy; | |
Others : 1085403 DOI : 10.1186/s12863-014-0113-8 |
|
received in 2014-04-28, accepted in 2014-10-13, 发布年份 2014 |
【 摘 要 】
Background
Diabetic nephropathy (DN) has become one of the most common causes of end-stage renal disease (ESRD) in many countries, such as 44.5% in Taiwan. Previous studies have shown that there is a genetic component to ESRD. Studies attempting to determine which genetic variants are related to DN in Han Chinese are limited. A case–control study was conducted to identify DN susceptibility variants in Han Chinese patients with type 2 diabetes.
Results
We included 574 unrelated type 2 diabetes patients (217 DN cases and 357 controls), who were genotyped using Illumina HumanHap550-Duo BeadChip. In single-SNP association tests, the SNPs rs11647932, rs11645214, and rs6499323 located at 16q22.1 under the additive-effect disease model were significantly associated with an approximately 2-fold increased risk of DN. In haplotype association tests, identified haplotypes located in the chromosome 16q22.1 region (containing ST3GAL2, COG4, SF3B3, and IL34 genes) raised DN risk. The strongest association was found with haplotype rs2288491-rs4985534-rs11645214 (C-C-G) (adjusted odds ratio [AOR] 1.93, 95% confidence interval [CI] 1.83-2.03, p = 6.25 × 10−7), followed by haplotype rs8052125-rs2288491-rs4985534-rs11645214 (G-C-C-G) (AOR 1.92, 95% CI 1.82-2.02, p = 6.56 × 10−7), and haplotype rs2303792-rs8052125-rs2288491-rs4985534-rs11645214 (A-G-C-C-G) (AOR 1.91, 95% CI 1.81-2.01, p = 1.15 × 10−6).
Conclusions
Our results demonstrate that the novel SNPs and haplotypes located at the 16q22.1 region may involve in the biological pathways of DN in Han Chinese patients with type 2 diabetes. This study can provide new insights into the etiology of DN.
【 授权许可】
2014 Liao et al.; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Figure 7. | 91KB | Image | download |
Figure 2. | 80KB | Image | download |
Figure 1. | 81KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 7.
【 参考文献 】
- [1]Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J: United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis 2012, 59(A7):e1-e420.
- [2]Jiang YD, Chang CH, Tai TY, Chen JF, Chuang LM: Incidence and prevalence rates of diabetes mellitus in Taiwan: analysis of the 2000–2009 Nationwide Health Insurance database. J Formos Med Assoc 2012, 111:599-604.
- [3]Yang WC, Hwang SJ: Incidence, prevalence and mortality trends of dialysis end-stage renal disease in Taiwan from 1990 to 2001: the impact of national health insurance. Nephrol Dial Transplant 2008, 23:3977-3982.
- [4]Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T: Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005, 28:164-176.
- [5]Seaquist ER, Goetz FC, Rich S, Barbosa J: Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989, 320:1161-1165.
- [6]Imperatore G, Knowler WC, Pettitt DJ, Kobes S, Bennett PH, Hanson RL: Segregation analysis of diabetic nephropathy in Pima Indians. Diabetes 2000, 49:1049-1056.
- [7]Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T: Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983, 25:496-501.
- [8]Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR: The changing natural history of nephropathy in type I diabetes. Am J Med 1985, 78:785-794.
- [9]Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ: Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 2011, 54:544-553.
- [10]Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai K, Iiizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M, Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakajima M, Nakamura Y, Maeda S: Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 2005, 54:1171-1178.
- [11]Hanson RL, Craig DW, Millis MP, Yeatts KA, Kobes S, Pearson JV, Lee AM, Knowler WC, Nelson RG, Wolford JK: Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 2007, 56:975-983.
- [12]McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN, Hester JM, Wing MR, Bostrom MA, Rudock ME, Lewis JP, Talbert ME, Blevins RA, Lu L, Ng MC, Sale MM, Divers J, Langefeld CD, Freedman BI, Bowden DW: A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int 2011, 79:563-572.
- [13]Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, Ng DP, Placha G, Canani LH, Bochenski J, Waggott D, Merchant ML, Krolewski B, Mirea L, Wanic K, Katavetin P, Kure M, Wolkow P, Dunn JS, Smiles A, Walker WH, Boright AP, Bull SB, Doria A, Rogus JJ, Rich SS, Warram JH, Krolewski AS: Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 2009, 58:1403-1410.
- [14]Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, McKay GJ, Williams WW, Sadlier DM, Makinen VP, Swan EJ, Palmer C, Boright AP, Ahlqvist E, Deshmukh HA, Keller BJ, Huang H, Ahola AJ, Fagerholm E, Gordin D, Harjutsalo V, He B, Heikkilä O, Hietala K, Kytö J, Lahermo P, Lehto M, Lithovius R, Osterholm AM, Parkkonen M, et al.: New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 2012, 8:e1002921.
- [15]Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, Wang TY, Chen RH, Shiu CF, Liu YM, Chang CC, Chen P, Chen CH, Fann CS, Chen YT, Wu JY: A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 2010, 6:e1000847.
- [16][http://health99.hpa.gov.tw/Hot_News/h_NewsDetailN.aspx?TopIcNo=6459] webcite The Report of Chronic Kidney Disease Prevention, 2011 [in Chinese]. []
- [17]Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Van Lente F, Greene T, Coresh J: A new equation to estimate glomerular filtration rate. Ann Intern Med 2009, 150:604-612.
- [18]K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification Am J Kidney Dis 2002, 39:S1-S266.
- [19]Gauderman WJ, Morrison JM: QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies, http://hydra.usc.edu/gxe. 2006
- [20]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21:263-265.
- [21]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81:559-575.
- [22]Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ: LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010, 26:2336-2337.
- [23]Macintyre G, Bailey J, Haviv I, Kowalczyk A: is-rSNP: a novel technique for in silico regulatory SNP detection. Bioinformatics 2010, 26:i524-i530.
- [24][http://hapmap.ncbi.nlm.nih.gov] webcite Data Rel 27 Phase II+III, Feb 09. International HapMap Consortium.. Accessed May 21, 2013.
- [25]Taniguchi A, Morishima T, Tsujita Y, Matsumoto Y, Matsumoto K: Genomic structure, expression, and transcriptional regulation of human Gal beta 1,3 GalNAc alpha 2,3-sialyltransferase gene. Biochem Biophys Res Commun 2003, 300:570-576.
- [26]Gopaul KP, Crook MA: Sialic acid: a novel marker of cardiovascular disease? Clin Biochem 2006, 39:667-681.
- [27]Chen J, Gall MA, Yokoyama H, Jensen JS, Deckert M, Parving HH: Raised serum sialic acid concentration in NIDDM patients with and without diabetic nephropathy. Diabetes Care 1996, 19:130-134.
- [28]Nayak BS, Roberts L: Relationship between inflammatory markers, metabolic and anthropometric variables in the Caribbean type 2 diabetic patients with and without microvascular complications. J Inflamm 2006, 3:17. BioMed Central Full Text
- [29]Crook MA, Pickup JC, Lumb PJ, Giorgino F, Webb DJ, Fuller JH, Group EICS: Relationship between plasma sialic acid concentration and microvascular and macrovascular complications in type 1 diabetes: the EURODIAB Complications Study. Diabetes Care 2001, 24:316-322.
- [30]Yokoyama H, Jensen JS, Myrup B, Mathiesen ER, Ronn B, Deckert T: Raised serum sialic acid concentration precedes onset of microalbuminuria in IDDM. A 10-year follow-up study. Diabetes Care 1996, 19:435-440.
- [31]Pickup JC, Mattock MB, Crook MA, Chusney GD, Burt D, Fitzgerald AP: Serum sialic acid concentration and coronary heart disease in NIDDM. Diabetes Care 1995, 18:1100-1103.
- [32]Soedamah-Muthu SS, Chaturvedi N, Pickup JC, Fuller JH, Group EPCS: Relationship between plasma sialic acid and fibrinogen concentration and incident micro- and macrovascular complications in type 1 diabetes. The EURODIAB Prospective Complications Study (PCS). Diabetologia 2008, 51:493-501.
- [33]Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J: Molecular Cell Biology. W.H. Freeman and Company, New York; 2004.
- [34]Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG: Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 2002, 157:405-415.
- [35]Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, Wetterslev J: Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ 2011, 343:d6898.
- [36]Tu ST, Chang SJ, Chen JF, Tien KJ, Hsiao JY, Chen HC, Hsieh MC: Prevention of diabetic nephropathy by tight target control in an asian population with type 2 diabetes mellitus: a 4-year prospective analysis. Arch Intern Med 2010, 170:155-161.
- [37]Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group Lancet 1998, 352:837-853.
- [38]Lawes CM, Parag V, Bennett DA, Suh I, Lam TH, Whitlock G, Barzi F, Woodward M: Blood glucose and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care 2004, 27:2836-2842.
- [39]Sorkin JD, Muller DC, Fleg JL, Andres R: The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care 2005, 28:2626-2632.
- [40]Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT: Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 2008, 320:807-811.
- [41]Shikata K, Makino H: Role of macrophages in the pathogenesis of diabetic nephropathy. Contrib Nephrol 2001, 134:46-54.
- [42]Tesch GH: Role of macrophages in complications of type 2 diabetes. Clin Exp Pharmacol Physiol 2007, 34:1016-1019.
- [43]Navarro-Gonzalez JF, Mora-Fernandez C, Muros De Fuentes M, Garcia-Perez J: Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011, 7:327-340.
- [44]Navarro-Gonzalez JF, Mora-Fernandez C: The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008, 19:433-442.
- [45]Zhang Y, Zhang Q: Bone morphogenetic protein-7 and gremlin: new emerging therapeutic targets for diabetic nephropathy. Biochem Biophys Res Commun 2009, 383:1-3.
- [46]Kanwar YS, Sun L, Xie P, Liu FY, Chen S: A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011, 6:395-423.
- [47]Wang S, de Caestecker M, Kopp J, Mitu G, Lapage J, Hirschberg R: Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol 2006, 17:2504-2512.
- [48]Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H, Klahr S, Hruska KA: Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 2003, 63:2037-2049.
- [49]McKnight AJ, Pettigrew KA, Patterson CC, Kilner J, Sadlier DM, Maxwell AP, Warren UKGSG: Investigation of the association of BMP gene variants with nephropathy in Type 1 diabetes mellitus. Diabet Med 2010, 27:624-630.
- [50]Yang HC, Lin CH, Hsu CL, Hung SI, Wu JY, Pan WH, Chen YT, Fann CS: A comparison of major histocompatibility complex SNPs in Han Chinese residing in Taiwan and Caucasians. J Biomed Sci 2006, 13:489-498.
- [51]Liu ZH, Guan TJ, Chen ZH, Li LS: Glucose transporter (GLUT1) allele (XbaI-) associated with nephropathy in non-insulin-dependent diabetes mellitus. Kidney Int 1999, 55:1843-1848.
- [52]Hsieh MC, Lin SR, Hsieh TJ, Hsu CH, Chen HC, Shin SJ, Tsai JH: Increased frequency of angiotensin-converting enzyme DD genotype in patients with type 2 diabetes in Taiwan. Nephrol Dial Transplant 2000, 15:1008-1013.
- [53]Huo P, Zhang D, Guan X, Mei Y, Zheng H, Feng X: Association between genetic polymorphisms of ACE & eNOS and diabetic nephropathy.Mol Biol Rep 2014, [Epub ahead of print] doi:10.1007/s11033-014-3736-y.
- [54]Liu L, Zheng T, Wang N, Wang F, Li M, Jiang J, Zhao R, Li L, Zhao W, Zhu Q, Jia W: The manganese superoxide dismutase Val16Ala polymorphism is associated with decreased risk of diabetic nephropathy in Chinese patients with type 2 diabetes. Mol Cell Biochem 2009, 322:87-91.
- [55]Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, Cooke JN, Toyoda M, Umezono T, Tarnow L, Hansen T, Gaede P, Jorsal A, Ng DP, Ikeda M, Yanagimoto T, Tsunoda T, Unoki H, Kawai K, Imanishi M, Suzuki D, Shin HD, Park KS, Kashiwagi A, Iwamoto Y, Kaku K, Kawamori R, Parving HH, Bowden DW, Pedersen O, et al.: A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet 2010, 6:e1000842.
- [56]Liu L, Zheng T, Wang F, Wang N, Song Y, Li M, Li L, Jiang J, Zhao W: Pro12Ala polymorphism in the PPARG gene contributes to the development of diabetic nephropathy in Chinese type 2 diabetic patients. Diabetes Care 2010, 33:144-149.
- [57]Tang SC, Leung VT, Chan LY, Wong SS, Chu DW, Leung JC, Ho YW, Lai KN, Ma L, Elbein SC, Bowden DW, Hicks PJ, Comeau ME, Langefeld CD, Freedman BI: The acetyl-coenzyme A carboxylase beta (ACACB) gene is associated with nephropathy in Chinese patients with type 2 diabetes. Nephrol Dial Transplant 2010, 25:3931-3934.
- [58]Zhang H, Wang J, Yi B, Zhao Y, Liu Y, Zhang K, Cai X, Sun J, Huang L, Liao Q: BsmI polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population. Gene 2012, 495:183-188.
- [59]Zhou J, Peng R, Li T, Luo X, Peng H, Zha H, Yin P, Wen L, Zhang Z: A potentially functional polymorphism in the regulatory region of let-7a-2 is associated with an increased risk for diabetic nephropathy. Gene 2013, 527:456-461.
- [60]Wu HY, Wang Y, Chen M, Zhang X, Wang D, Pan Y, Li L, Liu D, Dai XM: Association of ELMO1 gene polymorphisms with diabetic nephropathy in Chinese population. J Endocrinol Invest 2013, 36:298-302.
- [61]Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Grone HJ, Nelson PJ, Schlöndorff D, Cohen CD, Kretzler M: Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006, 55:2993-3003.
- [62]Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K: Transcriptome analysis of human diabetic kidney disease. Diabetes 2011, 60:2354-2369.
- [63]Hodgin JB, Nair V, Zhang H, Randolph A, Harris RC, Nelson RG, Weil EJ, Cavalcoli JD, Patel JM, Brosius FC 3rd, Kretzler M: Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 2013, 62:299-308.