期刊论文详细信息
BMC Clinical Pharmacology
R- and S-Equol have equivalent cytoprotective effects in Friedreich’s Ataxia
James W Simpkins2  Timothy E Richardson1 
[1] Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA;Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
关键词: Neuroprotection;    Fibroblasts;    Friedreich’s Ataxia;    Antioxidants;    17β-estradiol;    Equol;   
Others  :  860723
DOI  :  10.1186/2050-6511-13-12
 received in 2012-07-09, accepted in 2012-09-25,  发布年份 2012
PDF
【 摘 要 】

Background

Estradiol (E2) is a very potent cytoprotectant against a wide variety of cellular insults in numerous different cell models, including a Friedreich’s ataxia (FRDA) model. Previously, we demonstrated that estrogen-like compounds are able to prevent cell death in an FRDA model independent of any known estrogen receptor (ER) by reducing reactive oxygen species (ROS) and the detrimental downstream effects of ROS buildup including oxidative damage to proteins and lipids and impaired mitochondrial function.

Results

We have previously demonstrated by western blot that our cell model lacks ERα and expresses only very low levels of ERβ. Using L-buthionine (S,R)-sulfoximine (BSO) to induce oxidative stress in human FRDA fibroblasts, we determine the potency and efficacy of the soy-derived ERβ agonist S-equol and its ERα-preferring enantiomer, R-equol in vitro on cell viability and ROS accumulation. Here we demonstrate that these equol biphenolic compounds, while significantly less potent and efficacious than E2, provide statistically similar attenuation of ROS and cytoprotection against a BSO-induced oxidative insult.

Conclusions

These preliminary data demonstrate that estrogen and soy-derived equols could have a beneficial effect in delaying the onset and decreasing the severity of symptoms in FRDA patients by an antioxidant mechanism. In addition, these data confirm that the protection seen previously with E2 was indeed unrelated to ER binding.

【 授权许可】

   
2012 Richardson and Simpkins; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724194442988.pdf 405KB PDF download
48KB Image download
69KB Image download
65KB Image download
【 图 表 】

【 参考文献 】
  • [1]Friedreich N: Uber degenerative Atrophie der spinalen Hinterstrange. Arch Pathol Anat Phys Klin Med 1863, 26:391-419.
  • [2]Harding AE: Classification of the hereditary ataxias and paraplegias. Lancet 1983, 1:1151-1155.
  • [3]Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Cañizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocazza S, Koenig M, Pandolfo M: Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996, 271:1423-1427.
  • [4]Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E: Friedreich ataxia: molecular mechanisms, redox considerations and therapeutic opportunities. Antioxid Redox Signal 2010, 13:651-690.
  • [5]Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, Setchell KD: The identification of the weak oestrogen equol [7-hydroxy-3-(4’-hydroxyphenyl)chroman] in human urine. Biochem J 1982, 201:353-357.
  • [6]Wang XL, Hur HG, Lee JH, Kim KT, Kim SI: Enantioselective synthesis of S-equol from dihyrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 2005, 71:214-219.
  • [7]Price KR, Fenwick GR: Naturally occurring oestrogens in foods – a review. Food Addit Contam 1985, 2:73-106.
  • [8]Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY: Metabolites of dietary (soya) isoflavones in human urine. Clin Chim Acta 1993, 223:9-22.
  • [9]Akaza H, Miyanaga N, Takashima N, Naito S, Hirao Y, Tsukamoto T, Fujioka T, Mori M, Kim WJ, Song JM, Pantuck AJ: Comparisons of percent equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol 2004, 34:86-89.
  • [10]Pereboom D, Gilaberte Y, Sinues B, Escanero J, Alda JO: Antioxidant intracellular activity of genistein and equol. J Med Food 1999, 2:253-256.
  • [11]Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG: Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys 1998, 360:142-148.
  • [12]Duncan AM, Merz-Demlow BE, Xu X, Phipps WR, Kurzer MS: Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2000, 9:581-586.
  • [13]Lund TD, Munson DJ, Haldy ME, Setchell KD, Lephart ED, Handa RJ: Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reprod 2004, 70:1188-1195.
  • [14]Mitchell JH, Duthie SJ, Collins AR: Effects of phytoestrogens on growth and DNA integrity in human prostate tumor cell lines: PC-3 and LNCaP. Nutr Cancer 2000, 38:223-228.
  • [15]Frankenfeld CL, McTiernan A, Aiello EJ, Thomas WK, LaCroix K, Schramm J, Schwartz SM, Holt VL, Lampe JW: Mammographic density in relation to daidzein-metabolizing phenotypes in overweight, postmenopausal women. Cancer Epidemiol Biomarkers Prev 2004, 13:1156-1162.
  • [16]Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG, Katzenellenbogen JA: Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem 2004, 12:1559-1567.
  • [17]Setchell KD, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, Wolfe BE, Nechemias-Zimmer L, Brown NM, Lund TD, Handa RJ, Heubi JE: S-Equol, a potent ligand for estrogen receptor {beta}, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr 2005, 81:1072-1079.
  • [18]Richardson TE, Yang SH, Wen Y, Simpkins JW: Estrogen protection in Friedreich’s ataxia skin fibroblasts. Endocrinology 2011, 152:2742-2749.
  • [19]Richardson TE, Yu AE, Wen Y, Yang SH, Simpkins JW: Estrogen prevents oxidative damage to the mitochondria in Friedreich’s ataxia skin fibroblasts. PLoS One 2012, 7:e13600.
  • [20]Marmolino D: Friedreich’s ataxia: past, present and future. Brain Res Rev 2011, 67:311-330.
  • [21]Klopstock T, Chahrokh-Zadeh S, Holinski-Feder E, Meindl A, Gasser T, Pongratz D, Müller-Felber W: Markedly different course of Friedreich’s ataxia in sib pairs with similar GAA repeat expansions in the frataxin gene. Acta Neuropathol 1999, 97:139-142.
  • [22]Leone M, Brignolio F, Rosso MG, Curtoni ES, Moroni A, Tribolo A, Schiffer D: Friedreich’s ataxia: a descriptive epidemiological study in an Italian population. Clin Genet 1990, 38:161-169.
  • [23]Simpkins JW, Green PS, Gridley KE, Singh M, de Fiebre NC G, Rajakumar G: Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease. Am J Medicine 1997, 103:195-255.
  • [24]Behl C: Oestrogen as a neuroprotective hormone. Nat Rev Neurosci 2002, 3:433-442.
  • [25]Jauslin ML, Wirth T, Meier T, Shoumacher F: A cellular model for Friedreich Ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy. Hum Mol Genet 2002, 11:3055-63.
  • [26]Jauslin ML, Meier T, Smith RA, Murphy MP: Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 2003, 17:1972-4.
  • [27]Prokai L, Prokai-Tatrai K, Perjesi P, Simpkins JW: Mechanistic insights into the direct antioxidant effects of estrogens. Drug Dev Res 2006, 66:118-125.
  • [28]Prokai L, Prokai-Tatrai K, Perjesi P, Zharikova AD, Perez EJ, Liu R, Simpkins JW: Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection. Proc Natl Acad Sci USA 2003, 100:11741-11746.
  • [29]Montano MM, Bianco NR, Deng H, Wittmann BM, Chaplin LC, Katzenellenbogen BS: Estrogen receptor regulation of quinone reductase in breast cancer: implications for estrogen-induced breast tumor growth and therapeutic uses of tamoxifen. Front Biosci 2005, 10:1440-1461.
  • [30]Viña J, Sastre J, Pallardó FV, Gambini J, Borrás C: Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radic Res 2006, 40:1359-1365.
  • [31]Pajović SB, Saicić ZS: Modulation of antioxidant enzyme activities by sexual steroid hormones. Physiol Res 2008, 57:801-811.
  • [32]Simpkins JW, Dykens JA: Mitochondrial mechanisms of estrogen neuroprotection. Brain Res Rev 2008, 57:421-430.
  • [33]Duckles SP, Miller VM: Hormonal modulation of endothelial NO production. Pflugers Arch 2010, 459:841-851.
  • [34]White RE, Gerrity R, Barman SA, Han G: Estrogen and oxidative stress: a novel mechanism that may increase the risk for cardiovascular disease in women. Steroids 2010, 75:788-793.
  • [35]Liang Y, Belford S, Tang F, Prokai L, Simpkins JW, Hughes JA: Membrane fluidity effects of estratrienes. Brain Res Bull 2001, 54:661-668.
  • [36]Cegelski L, Rice CV, O'Connor RD, Caruano AL, Tochtrop GP, Cai ZY, Covey DF, Schaefer J: Mapping the locations of estradiol and potent neuroprotective analogues in phospholipid bilayers by REDOR NMR. Drug Dev Res 2006, 66:93-102.
  文献评价指标  
  下载次数:22次 浏览次数:10次