期刊论文详细信息
BMC Infectious Diseases
Spatiotemporal characteristics of pandemic influenza
Fredrik Elgh1  Hans Hauska3  Helena Palmgren1  Annika Linde2  Lars Skog3 
[1] Department of Clinical Microbiology, Umeå University, SE-100 44, Umeå, Sweden;Public Health Agency of Sweden, SE-100 44, Solna, Sweden;Division of Geodesy and Geoinformatics, Department of Urban Planning and Environment, Royal Institute of Technology (KTH), SE-100 44, Stockholm, Sweden
关键词: GIS;    Spatial modelling;    Temperature dependence;    Spatiotemporal spread;    A (H1N1) pdm09;    Asian influenza;    Russian influenza;   
Others  :  1127408
DOI  :  10.1186/1471-2334-14-378
 received in 2013-11-29, accepted in 2014-06-30,  发布年份 2014
PDF
【 摘 要 】

Background

Prediction of timing for the onset and peak of an influenza pandemic is of vital importance for preventive measures. In order to identify common spatiotemporal patterns and climate influences for pandemics in Sweden we have studied the propagation in space and time of A(H1N1)pdm09 (10,000 laboratory verified cases), the Asian Influenza 1957–1958 (275,000 cases of influenza-like illness (ILI), reported by local physicians) and the Russian Influenza 1889–1890 (32,600 ILI cases reported by physicians shortly after the end of the outbreak).

Methods

All cases were geocoded and analysed in space and time. Animated video sequences, showing weekly incidence per municipality and its geographically weighted mean (GWM), were created to depict and compare the spread of the pandemics. Daily data from 1957–1958 on temperature and precipitation from 39 weather stations were collected and analysed with the case data to examine possible climatological effects on the influenza dissemination.

Results

The epidemic period lasted 11 weeks for the Russian Influenza, 10 weeks for the Asian Influenza and 9 weeks for the A(H1N1)pdm09. The Russian Influenza arrived in Sweden during the winter and was immediately disseminated, while both the Asian Influenza and the A(H1N1)pdm09 arrived during the spring. They were seeded over the country during the summer, but did not peak until October-November. The weekly GWM of the incidence moved along a line from southwest to northeast for the Russian and Asian Influenza but northeast to southwest for the A(H1N1)pdm09. The local epidemic periods of the Asian Influenza were preceded by falling temperature in all but one of the locations analysed.

Conclusions

The power of spatiotemporal analysis and modeling for pandemic spread was clearly demonstrated. The epidemic period lasted approximately 10 weeks for all pandemics. None of the pandemics had its epidemic period before late autumn. The epidemic period of the Asian Influenza was preceded by falling temperatures. Climate influences on pandemic spread seem important and should be further investigated.

【 授权许可】

   
2014 Skog et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220141340891.pdf 2775KB PDF download
Figure 8. 56KB Image download
Figure 7. 126KB Image download
Figure 6. 59KB Image download
Figure 5. 74KB Image download
Figure 4. 64KB Image download
Figure 3. 56KB Image download
Figure 2. 102KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Chowell G, Viboud C, Munayco CV, Gómez J, Simonsen L, Miller M, Tamerius J, Fiestas V, Halsey V, Laguna-Torres V: Spatial and temporal characteristics of the 2009 a/H1N1 influenza pandemic in Peru. PLoS ONE 2011, 6(6):e21287. doi:10.1371/journal.pone.0021287
  • [2]Chowell G, Towers S, Viboud C, Fuentes R, Sotomayor V, Simonsen L, Miller M, Lima M, Villaroel C, Chiu M, Villaroel J, Olea A: The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile. BMC Infect Dis 2012, 12:298.
  • [3]Casalegno J, Ottmann M, Bouscambert Duchamp M, Escuret V, Billaud G, Frobert E, Morfin F, Lina B, Rhinoviruses delayed the circulation of the pandemic influenza A: European society of clinical microbiology and infectious diseases. CMI 2010, 16:326-329.
  • [4]Huang I, Li W, Sui J, Marasco W, Choe H, Farzan M: Influenza A virus neuraminidase limits viral superinfection, 2008. J Virol 2008, 82(10):4834. DOI: 10.1128/JVI.00079-08 Published Ahead of Print 5 March 2008
  • [5]Linde A, Rotzén-Ostlund M, Zweygberg-Wirgart B, Rubinova S, Brytting M: Does viral interference affect spread of influenza? Euro Surveill 2009, 14(40):pii: 19354.
  • [6]May R, Nowak M, Virus D: Mathematical principles of immunology and virology. Oxford: Oxford University Press; 2001:256. 48 line illus
  • [7]Tellier R: Aerosol transmission of influenza A virus: a review of new studies. J R Soc Interface 2009., 6doi:10.1098/rsif.2009.0302.focus first published online 22 September 2009
  • [8]Lowen AC, Mubareka S, Steel J, Palese P: Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 2007, 3:1470-1476. doi:10.1371/journal.ppat.0030151
  • [9]Linroth K: Influensan i Sverige 1889–1890 enligt iakttagelser af landets läkare, på Svenska läkaresällskapets uppdrag skildrad af Klas Linroth, Curt Wallis och F W Warfvinge: Del I: influensan i epidemiologiskt hänseende: [Influenza in Sweden 1889–1890 according to observations of the country’s doctors, description on request the Swedish medical society: part 1: Influenza in epidemiological terms] [In Swedish]. Svenska Läkaresällskapets Nya Handlingar Serie III 1965, 1890:1-92. Lundström
  • [10]Skog L, Hauska H, Linde A: The Russian influenza in Sweden in 1889–90: an example of geographic information system analysis. Euro Surveill 2008., 13(49) Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19056 webcite
  • [11]Valleron A, Coria A, Valtata S, Meurissec S, Carrata F, Boëlle P: Transmissibility and geographic spread of the 1889 influenza pandemic. PNAS; published ahead of print April 26, 2010 doi:10.1073/pnas.1000886107
  • [12]Byrne J: Flu pandemics past and present, ABC-CLIO, history and the headlines. 2011. http://www.historyandtheheadlines.abc-clio.com/ContentPages/ContentPage.aspx?entryId=1319590¤tSection=1319465&productid=25 webcite
  • [13]Wikipedia: Influenza A virus subtype H2N2. 2013. http://en.wikipedia.org/wiki/Influenza_A_virus_subtype_H2N2 webcite
  • [14]SMI: The influenza A (H1N1)2009 pandemic in Sweden, 2009–2010. 2011. http://www.folkhalsomyndigheten.se/publicerat-material/publikationer/The-Influenza-AH1N12009-Pandemic-in-Sweden-2009-2010/ webcite
  • [15]World Health Organization: Timeline of influenza A(H1N1) cases. 2013. http://www.who.int/csr/disease/swineflu/history_map/InfluenzaAH1N1_maps.html webcite
  • [16]Widgren K, Magnusson M, Hagstam P, Widerström M, Ortqvist A, Einemo IM, Follin P, Lindblom A, Mäkitalo S, Wik O, Osterlund A, Grünewald M, Uhnoo I, Linde A: Prevailing effectiveness of the 2009 influenza A(H1N1)pdm09 vaccine during the 2010/11 season in Sweden. Euro Surveill 2013, 18((15):pii=20447. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20447 webcite
  • [17]World Health Organization: Pandemic (H1N1) 2009—update 99 [cited 2013 Mar 23]. http://www.who.int/csr/don/2010_05_07/en/index.html webcite
  • [18]Socialstyrelsen. 2013. http://www.socialstyrelsen.se/english/aboutus/ourhistory webcite
  • [19]Allmän hälso- och sjukvård: Sveriges officiella statistik 1957. 1957. http://www.scb.se/Grupp/Hitta_statistik/Historisk_statistik/_Dokument/SOS/Halso_sjukvard/Allman%20halsovard%20och%20sjukvard%201957.pdf webcite
  • [20]Riksarkivet 2013. http://www.riksarkivet.se webcite
  • [21]SMHI 2013. http://www.smhi.se webcite
  • [22]SMI 2013. http://www.smittskyddsinstitutet.se webcite
  • [23]Folkhälsomyndigheten 2014. http://www.folkhalsomyndigheten.se/about-folkhalsomyndigheten-the-public-health-agency-of-sweden/ webcite
  • [24]Sminet 2013. http://www.sminet.se webcite
  • [25]SCB 2013. http://www.scb.se/ webcite
  • [26]Demografiska databasen 2013. http://www.ddb.umu.se webcite
  • [27]Esri 2013. http://www.esri.com/software/arcgis webcite
  • [28]MapRef.org 2013. http://mapref.org/MapProjectionsSE.html webcite
  • [29]Hitta.se 2013. http://hitta.se webcite
  • [30]PAR 2013. http://www.par.se webcite
  • [31]SPAR 2013. http://www.statenspersonadressregister.se webcite
  • [32]Andersson E, Kühlmann-Berenzon S, Linde A, Schiöler L, Rubinova S, Frisén M: Predictions by early indicators of the time and height of the peaks of yearly influenza outbreaks in Sweden. Scand J Public Health, Jul 2008, 36(5):475-82. doi:10.1177/1403494808089566. Epub 2008 Jun 20. PMID:18567652
  • [33]Charland K, Buckeridge D, Sturtevant J, Melton F, Reis B, Mandl K, Brownstein J: Effect of environmental factors on the spatio-temporal patterns of influenza spread. Epidemiol Infect (2009) 2013, 137:1377-1387. Cambridge University Press 2009, doi:10.1017/S0950268809002283
  • [34]Atchison C, Tam C, Hajat S, van Pelt W, Cowden B, Lopman B: Temperature-dependent transmission of rotavirus in Great Britain and The Netherlands. Proc R Soc B (2010) 2009, 277:933-942. doi:10.1098/rspb.2009.1755, http://rspb.royalsocietypublishing.org/content/277/1683/933.full.pdf+html webcite
  • [35]Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M: Absolute humidity and the seasonal onset of influenza in the continental united states. PLoS Biol 2010, 8(2):e1000316. doi:10.1371/journal.pbio.1000316
  • [36]Aman M, Spanish Influenza: The Swedish epidemic, 1918–1920, and its international background. Almqvist & Wiksell International 1990. Studia Historica Upsaliensa No. 160.
  文献评价指标  
  下载次数:148次 浏览次数:9次