期刊论文详细信息
BMC Genomics
Global discovery and characterization of small non-coding RNAs in marine microalgae
Thomas Mock2  Tamas Dalmay6  Vincent Moulton5  Irina Mohorianu6  Florian Maumus3  Simon Moxon4  Tina Rathjen7  Matthew Beckers5  Sara Lopez-Gomollon1 
[1] Current address: Estación Experimental Aula Dei, CSIC (Consejo Superior de Investigaciones Científicas), 50059 Zaragoza, Spain;School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK;UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France;Current address: The Genome Analysis Centre, Norwich NR4 7UH, UK;School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK;School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK;Current address: Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia
关键词: tRNA;    Stress;    Small RNA;    Non-coding RNAs;    MicroRNA;    Marine phytoplankton;    Growth;    Diatoms;    Coccolithophores;   
Others  :  1216254
DOI  :  10.1186/1471-2164-15-697
 received in 2014-05-10, accepted in 2014-07-09,  发布年份 2014
PDF
【 摘 要 】

Background

Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi.

Results

Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions.

Conclusions

This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and maybe used for acclimation to environmental conditions.

【 授权许可】

   
2014 Lopez-Gomollon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629100037781.pdf 3693KB PDF download
Figure 5. 136KB Image download
Figure 4. 66KB Image download
Figure 3. 60KB Image download
Figure 2. 73KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG: Primary production of the biosphere: integrating terrestrial and oceanic components. Science 1998, 281:237-240.
  • [2]Furnas MJ: In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J Plankton Res 1990, 12:1117-1151.
  • [3]Smetacek VS: Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 1985, 84:239-289.
  • [4]Brown CW, Yoder JA: Coccolithophore blooms in the global ocean. J Geophys Res 1994, 99:7467-7482.
  • [5]Kroeger N, Poulsen N: Diatoms-From cell wall biogenesis to nanotechnology. Annu Rev Genet 2008, 42:83-107.
  • [6]Gertman R, Shir IB, Kababya S, Schmidt A: In situ observation of the internal structure and composition of biomineralized Emiliania huxleyi calcite by solid-state NMR spectroscopy. J Am Chem Soc 2008, 130:13425-13432.
  • [7]Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, et al.: The genome of the diatom Thalassiosira pseudonana: ecology, evolution and metabolism. Science 2004, 306:79-86.
  • [8]Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, et al.: The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456:239-244.
  • [9]Lommer M, Specht M, Roy AS, Kraemer L, Andreson R, Gutowska MA, Wolf J, Bergner SV, Schilhabel MB, Klostermeier UC, Beiko RG, Rosenstiel P, Hippler M, Laroche J: Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol 2012, 13:R66.
  • [10]Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Dacks JB, Delwiche CF, et al.: Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 2013, 499:209-213.
  • [11]Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M, Holtermann K, Durkin C, Bondurant SS, Richmond K, Rodesch M, Kallas T, Huttlin EL, Cerrina F, Sussman MR, Armbrust EV: Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc Natl Acad Sci U S A 2008, 105:1579-1584.
  • [12]Veluchamy A, Lin X, Maumus F, Rivarola M, Bhavsar J, Creasy T, O'Brien K, Sengamalay NA, Tallon LJ, Smith AD, Rayko E, Ahmed I, Le Crom S, Farrant GK, Sgro JY, Olson SA, Bondurant SS, Allen AE, Rabinowicz PD, Sussman MR, Bowler C, Tirichine L: Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun 2013, 4:2091.
  • [13]Falkowski PG, Katz M, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR: The Evolution of modern eukaryotic phytoplankton. Science 2004, 305:354-360.
  • [14]Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D: Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 2009, 324:1724-1726.
  • [15]Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD: Climate change impacts on marine ecosystems. Ann Rev Mar Sci 2012, 4:11-37.
  • [16]Finnegan EJ, Matzke MA: The small RNA world. J Cell Sci 2003, 116:4689-4693.
  • [17]Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007, 8:93-103.
  • [18]Hamilton A, Baulcombe D: A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286:950-952.
  • [19]Morris KV (Ed): Non-coding RNAs and Epigenetic Regulation of Gene Expression: Drivers of Natural Selection. Norfolk (UK): Caister Academic Press; 2012. ISBN 978-1-904455-94-3
  • [20]Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, ENCODE Project Consortium: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816.
  • [21]Thompson DM, Parker R: Stressing out over tRNA cleavage. Cell 2009, 138:215-219.
  • [22]Garcia-Silva MR, Cabrera-Cabrera F, Guida MC, Cayota A: Hints of tRNA-derived small RNAs role in RNA silencing mechanisms. Genes 2012, 3:603-614.
  • [23]Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JWS, Green PJ, Barton GJ, Hutvagner G: Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009, 15:2147-2160.
  • [24]Lee YS, Shibata Y, Malhotra A, Dutta A: A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009, 23:2639-2649.
  • [25]Schopman NCT, Heynen S, Haasnoot J, Berkhout B: A miRNA-tRNA mix-up: tRNA origin of proposed miRNA. RNA Biol 2010, 7:573-576.
  • [26]Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC: miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 2007, 447:1126-1129.
  • [27]Norden-Krichmar TM, Allen AE, Gaasterland T, Hildebrand M: Characterization of the small RNA transcriptome of the diatom, Thalassiosira pseudonana. PLoS One 2011, 8:e22870.
  • [28]Huang A, He L, Wang G: Identification and characterization of microRNAs from Phaeodactylum tricornutum by high-throughput sequencing and bioinformatics analysis. BMC Genomics 2011, 12:337.
  • [29]Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T: Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 2008, 18:1602-1609.
  • [30]Lopez-Gomollon S: Detecting sRNAs by Northern blotting. Methods Mol Biol 2011, 732:25-38.
  • [31]Fiala M, Oriol L: Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 1990, 10:629-636.
  • [32]Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folks L, Schwach F, Dalmay T, Moulton V: The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 2012, 28:2059-2061.
  • [33]Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40:37-52.
  • [34]Frank F, Sonenberg N, Nagar B: Structural basis for 5’-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 2010, 465:818-822.
  • [35]Holcik M, Sonenberg N: Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005, 6:318-327.
  • [36]Joechel C, Rederstorff M, Hertel J, Stadler PF, Hofacker IL, Schrettl M, Haas H, Huettenhofer A: Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 2008, 36:2677-2689.
  • [37]De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A: Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 2009, 37:e96.
  • [38]Shi H, Tschudi C, Ullu E: An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. RNA 2006, 12:2063-2072.
  • [39]Maumus F, Rabinowicz P, Bowler C, Maximo R: Stemming epigenetics in marine stramenopiles. Curr Genomics 2011, 12:357-370.
  • [40]Gebetsberger J, Zywicki M, Kuenzi A, Polacek N: tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea 2012, 2012:ID260909.
  • [41]Garcia-Silva MR, Frugier M, Tosar JP, Correa-Dominguez A, Ronalte-Alves L, Parodi-Talice A, Rovira C, Robello C, Goldberg S, Cayota A: A population of tRNA-derived small RNAs is actively produced in Trypanosoma cruzi and recruited to specific cytoplasmatic granules. Mol Biochem Parasitol 2010, 171:64-73.
  • [42]Prüfer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J: PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 2008, 24:1530-1531.
  • [43]Pavesi A, Conterio F, Bolchi A, Dieci G, Ottonello S: Identification of new eukaryotic tRNA genes in genomic DNA databases by a multistep weight matrix analysis of transcriptional control regions. Nucleic Acids Res 1994, 22:1247-1256.
  • [44]Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
  • [45]Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A: Rfam 11.0: 10 Years of RNA Families. Nucleic Acids Res 2013, 41:D226-D232.
  • [46]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  文献评价指标  
  下载次数:57次 浏览次数:29次