期刊论文详细信息
BMC Genomics
Detection and characterization of small insertion and deletion genetic variants in modern layer chicken genomes
David W. Burt4  Pete Kaiser4  Rudolf Preisinger1  Janet Fulton2  Richard Kuo4  Bob Paton4  Lel Eory4  Hannah K. Ralph4  Almas A. Gheyas4  Clarissa Boschiero3 
[1] Lohmann Tierzucht GmbH, Cuxhaven, Germany;Hy-Line International, Dallas Center, IA, USA;Current Address: Departamento de Zootecnia, University of Sao Paulo/ESALQ, Piracicaba 13418-900, SP, Brazil;The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
关键词: Next generation sequencing;    Loss-of-function mutation;    Layer chicken;    InDel;    False discovery rate;    SAMtools;    Dindel;   
Others  :  1222459
DOI  :  10.1186/s12864-015-1711-1
 received in 2014-12-17, accepted in 2015-06-22,  发布年份 2015
PDF
【 摘 要 】

Background

Small insertions and deletions (InDels) constitute the second most abundant class of genetic variants and have been found to be associated with many traits and diseases. The present study reports on the detection and characterisation of about 883 K high quality InDels from the whole-genome analysis of several modern layer chicken lines from diverse breeds.

Results

To reduce the error rates seen in InDel detection, this study used the consensus set from two InDel-calling packages: SAMtools and Dindel, as well as stringent post-filtering criteria. By analysing sequence data from 163 chickens from 11 commercial and 5 experimental layer lines, this study detected about 883 K high quality consensus InDels with 93 % validation rate and an average density of 0.78 InDels/kb over the genome. Certain chromosomes, viz, GGAZ, 16, 22 and 25 showed very low densities of InDels whereas the highest rate was observed on GGA6. In spite of the higher recombination rates on microchromosomes, the InDel density on these chromosomes was generally lower relative to macrochromosomes possibly due to their higher gene density. About 43–87 % of the InDels were found to be fixed within each line. The majority of detected InDels (86 %) were 1–5 bases and about 63 % were non-repetitive in nature while the rest were tandem repeats of various motif types. Functional annotation identified 613 frameshift, 465 non-frameshift and 10 stop-gain/loss InDels. Apart from the frameshift and stopgain/loss InDels that are expected to affect the translation of protein sequences and their biological activity, 33 % of the non-frameshift were predicted as evolutionary intolerant with potential impact on protein functions. Moreover, about 2.5 % of the InDels coincided with the most-conserved elements previously mapped on the chicken genome and are likely to define functional elements. InDels potentially affecting protein function were found to be enriched for certain gene-classes e.g. those associated with cell proliferation, chromosome and Golgi organization, spermatogenesis, and muscle contraction.

Conclusions

The large catalogue of InDels presented in this study along with their associated information such as functional annotation, estimated allele frequency, etc. are expected to serve as a rich resource for application in future research and breeding in the chicken.

【 授权许可】

   
2015 Boschiero et al.

【 预 览 】
附件列表
Files Size Format View
20150821052905254.pdf 2251KB PDF download
Fig. 10. 59KB Image download
Fig. 9. 69KB Image download
Fig. 8. 82KB Image download
Fig. 7. 30KB Image download
Fig. 6. 26KB Image download
Fig. 5. 17KB Image download
Fig. 4. 20KB Image download
Fig. 3. 41KB Image download
Fig. 2. 49KB Image download
Fig. 1. 46KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Vali U, Brandstrom M, Johansson M, Ellegren H. Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet. 2008; 9:8.
  • [2]Mullaney JM, Mills RE, Pittard WS, Devine SE. Small insertions and deletions (INDELs) in human genomes. Hum Mol Genet. 2010; 19:R131-R6.
  • [3]Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST et al.. Human gene mutation database (HGMD (R)): 2003 update. Hum Mutat. 2003; 21(6):577-81.
  • [4]Fang MX, Nie QH, Luo CL, Zhang DX, Zhang XQ. An 8 bp indel in exon 1 of Ghrelin gene associated with chicken growth. Domest Anim Endocrin. 2007; 32(3):216-25.
  • [5]Kerje S, Sharma P, Gunnarsson U, Kim H, Bagchi S, Fredriksson R et al.. The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene. Genetics. 2004; 168(3):1507-18.
  • [6]Cui JX, Du HL, Liang Y, Deng XM, Li N, Zhang XQ. Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult Sci. 2006; 85(1):26-31.
  • [7]Zhang S, Han RL, Gao ZY, Zhu SK, Tian YD, Sun GR et al.. A novel 31-bp indel in the paired box 7 (PAX7) gene is associated with chicken performance traits. Brit Poult Sci. 2014; 55(1):31-6.
  • [8]Tang S, Ou J, Sun D, Zhang Y, Xu G, Zhang Y. A novel 62-bp indel mutation in the promoter region of transforming growth factor-beta 2 (TGFB2) gene is associated with body weight in chickens. Anim Genet. 2011; 42(1):108-12.
  • [9]Tummala H, Ali M, Getty P, Hocking PM, Burt DW, Inglehearn CF et al.. Mutation in the guanine nucleotide-binding protein beta-3 causes retinal degeneration and embryonic mortality in chickens. Invest Ophth Vis Sci. 2006; 47(11):4714-8.
  • [10]Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar AA et al.. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res. 2011; 21(6):830-9.
  • [11]Iengar P. An analysis of substitution, deletion and insertion mutations in cancer genes. Nucleic Acids Res. 2012; 40(14):6401-13.
  • [12]Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA. Microdeletions and microinsertions causing human genetic disease: Common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat. 2005; 26(3):205-13.
  • [13]Britten RJ. Divergence between samples of chimpanzee and human DNA sequences is 5 %, counting indels. Proc Natl Acad Sci U S A. 2002; 99(21):13633-5.
  • [14]Rubin CJ, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT et al.. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010; 464(7288):587-91.
  • [15]Chen CH, Chuang TJ, Liao BY, Chen FC. Scanning for the signatures of positive selection for human-specific insertions and deletions. Genome Biol Evol. 2009; 1:415-9.
  • [16]Neuman JA, Isakov O, Shomron N. Analysis of insertion-deletion from deep-sequencing data: software evaluation for optimal detection. Brief Bioinform. 2013; 14(1):46-55.
  • [17]Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008; 18(11):1851-8.
  • [18]Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, Durbin R. Dindel: Accurate indel calls from short-read data. Genome Res. 2011; 21(6):961-73.
  • [19]Messer PW, Arndt PF. The majority of recent short DNA insertions in the human genome are tandem duplications. Mol Biol Evol. 2007; 24(5):1190-7.
  • [20]Madsen BE, Villesen P, Wiuf C. Short tandem repeats in human exons: a target for disease mutations. BMC Genomics. 2008; 9:410.
  • [21]Bansal V, Libiger O. A probabilistic method for the detection and genotyping of small indels from population-scale sequence data. Bioinformatics. 2011; 27(15):2047-53.
  • [22]Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60.
  • [23]Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform. 2010; 11(5):473-83.
  • [24]Krawitz P, Rodelsperger C, Jager M, Jostins L, Bauer S, Robinson PN. Microindel detection in short-read sequence data. Bioinformatics. 2010; 26(6):722-9.
  • [25]Jia PL, Li F, Xia JF, Chen HQ, Ji HB, Pao W et al.. Consensus rules in variant detection from next-generation sequencing data. PLoS One. 2012; 7(6):e38470.
  • [26]Gregory TR. Insertion-deletion biases and the evolution of genome size. Gene. 2004; 324:15-34.
  • [27]Lovett ST. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol. 2004; 52(5):1243-53.
  • [28]Tanay A, Siggia ED. Sequence context affects the rate of short insertions and deletions in flies and primates. Genome Biol. 2008; 9(2):R37.
  • [29]Kim R, Guo JT. Systematic analysis of short internal indels and their impact on protein folding. BMC Struct Biol. 2010; 10:24.
  • [30]Chen FC, Chen CJ, Li WH, Chuang TJ. Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Res. 2007; 17(1):16-22.
  • [31]Zhang ZDD, Du J, Lam H, Abyzov A, Urban AE, Snyder M et al.. Identification of genomic indels and structural variations using split reads. BMC Genomics. 2011; 12:375.
  • [32]Consortium TGP. A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061-73.
  • [33]Wong GKS, Liu B, Wang J, Zhang Y, Yang X, Zhang ZJ et al.. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature. 2004; 432(7018):717-22.
  • [34]Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S et al.. Development of a high density 600 K SNP genotyping array for chicken. BMC Genomics. 2013; 14:59.
  • [35]Gheyas AA, Boschiero C, Eory L, Ralph H, Kuo R, Woolliams JA et al.. Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res. 2015; 22(3):205-17.
  • [36]Brandstrom M, Ellegren H. The genomic landscape of short insertion and deletion polymorphisms in the chicken (Gallus gallus) genome: A high frequency of deletions in tandem duplicates. Genetics. 2007; 176(3):1691-701.
  • [37]Fan WL, Ng CS, Chen CF, Lu MYJ, Chen YH, Liu CJ et al.. Genome-wide patterns of genetic variation in two domestic chickens. Genome Biol Evol. 2013; 5(7):1376-92.
  • [38]Yan Y, Yi G, Sun C, Qu L, Yang N. Genome-wide characterization of insertion and deletion variation in chicken using next generation sequencing. PLoS One. 2014; 9(8):e104652.
  • [39]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16):2078-9.
  • [40]Zhan BJ, Fadista J, Thomsen B, Hedegaard J, Panitz F, Bendixen C. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC Genomics. 2011; 12:557.
  • [41]Sebastiani P, Riva A, Montano M, Pham P, Torkamani A, Scherba E et al.. Whole genome sequences of a male and female supercentenarian, ages greater than 114 years. Front Genet. 2011; 2:90.
  • [42]Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F et al.. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013; 496(7446):494-7.
  • [43]Samtools. http://samtools.sourceforge.net/mpileup.shtml (site visited on 02/09/2014).
  • [44]Park MH, Rhee H, Park JH, Woo HM, Choi BO, Kim BY et al.. Comprehensive analysis to improve the validation rate for single nucleotide variants detected by next-generation sequencing. PLoS One. 2014; 9(1):e86664.
  • [45]Raineri E, Ferretti L, Esteve-Codina A, Nevado B, Heath S, Perez-Enciso M. SNP calling by sequencing pooled samples. BMC Bioinformatics. 2012; 13:239.
  • [46]Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012; 7(10):e46688.
  • [47]Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K et al.. Genetic variation in an individual human exome. PLoS Genet. 2008; 4(8):e1000160.
  • [48]Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou MM, Rosenbloom K et al.. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034-50.
  • [49]UCSC. Multiple alignments of 6 vertebrate genomes with chicken. http://genome.ucsc.edu/goldenpath/help/ftp.html (site visited on 03/09/2014).
  • [50]Cooper DN. Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Hum Genomics. 2010; 4(5):284-8.
  • [51]Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57.
  • [52]Cutler DJ, Jensen JD. To Pool, or Not to Pool? Genetics. 2010; 186(1):41-3.
  • [53]Ingman M, Gyllensten U. SNP frequency estimation using massively parallel sequencing of pooled DNA. Eur J Hum Genet. 2009; 17(3):383-6.
  • [54]Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al.. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456(7218):53-9.
  • [55]Eck SH, Benet-Pages A, Flisikowski K, Meitinger T, Fries R, Strom TM. Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 2009; 10(8):R82.
  • [56]Chen K, McLellan MD, Ding L, Wendl MC, Kasai Y, Wilson RK et al.. PolyScan: An automatic indel and SNP detection approach to the analysis of human resequencing data. Genome Res. 2007; 17(5):659-66.
  • [57]Burt DW. Chicken genome: current status and future opportunities. Genome Res. 2005; 15(12):1692-8.
  • [58]Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP et al.. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004; 432(7018):695-716.
  • [59]Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992; 356(6369):519-20.
  • [60]Nachman MW. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 2001; 17(9):481-5.
  • [61]Miller MM, Robinson CM, Abernathy J, Goto RM, Hamilton MK, Zhou H et al.. Mapping genes to chicken microchromosome 16 and discovery of olfactory and scavenger receptor genes near the major histocompatibility complex. J Hered. 2014; 105(2):203-15.
  • [62]Sundstrom H, Webster MT, Ellegren H. Reduced variation on the chicken Z chromosome. Genetics. 2004; 167(1):377-85.
  • [63]Lee KT, Chung WH, Lee SY, Choi JW, Kim J, Lim D et al.. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics. 2013; 14:519.
  • [64]Shiihara T, Watanabe M, Moriyama K, Uematsu M, Sameshima K. A novel PLP1 frameshift mutation causing a milder form of Pelizaeus-Merzbacher disease. Brain Dev. 2014; 37(4):455-8.
  • [65]Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al.. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001; 411(6837):603-6.
  • [66]Myerowitz R. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum Mutat. 1997; 9(3):195-208.
  • [67]Iannuzzi MC, Stern RC, Collins FS, Hon CT, Hidaka N, Strong T et al.. Two frameshift mutations in the cystic fibrosis gene. Am J Hum Genet. 1991; 48(2):227-31.
  • [68]Pedersen AG, Nielsen H. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proceedings/International Conference on Intelligent Systems for Molecular Biology; ISMB International Conference on Intelligent Systems for Molecular Biology. 1997; 5:226-33.
  • [69]Chun S, Fay JC. Evidence for hitchhiking of deleterious mutations within the human genome. PLoS Genet. 2011; 7(8):e1002240.
  • [70]Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res. 2010; 38:e164.
  • [71]Gardner PP, Fasold M, Burge SW, Ninova M, Hertel J, Kehr S et al.. Conservation and losses of Non-Coding RNAs in Avian genomes. PLoS One. 2015; 10(3):e0121797.
  • [72]Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002; 18(1):207-8.
  文献评价指标  
  下载次数:48次 浏览次数:42次