期刊论文详细信息
BMC Immunology
Immunogenicity of infectious pathogens and vaccine antigens
Olivier Garraud2  Antoine Prigent1  Siddhartha Mahanty3 
[1]EA3064, Université de Lyon, Saint-Etienne, 42023, France
[2]Institut National de la Transfusion Sanguine (INTS), Paris, 75015, France
[3]Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892, MD, USA
关键词: Antibody isotype;    Vaccine;    Antigen presentation;    Pathogen;    Infection;    Immunogenicity;   
Others  :  1209040
DOI  :  10.1186/s12865-015-0095-y
 received in 2014-11-26, accepted in 2015-02-20,  发布年份 2015
PDF
【 摘 要 】

The concept of the immunogenicity of an antigen is frequently encountered in the context of vaccine development, an area of intense interest currently due to the emergence or re-emergence of infectious pathogens with the potential for worldwide spread. However, the theoretical notion of immunogenicity as discussed in older textbooks of immunology needs reconsideration due to advances in our understanding of immunologic responses. Immunogenicity is a property that can either be a desirable attribute, for example in the generation of an effective protective immunity against infectious pathogens or an undesirable trait, for example when it relates to novel therapeutic compounds and drugs, where an immune response needs to be prevented or inhibited. In this Forum Article, we aimed to revisit the issue of immunogenicity to discuss a series of simple questions relevant to the concept that are frequently rephrased but incompletely resolved in the immunologic literature.

【 授权许可】

   
2015 Mahanty et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150602021522107.pdf 334KB PDF download
【 参考文献 】
  • [1]Murphy KTPWMJC. Janeway's immunobiology. Garland Science, New York; 2012.
  • [2]Anonymous. The American Heritage medical dictionary. Boston: Houghton Mifflin Co.; 2007.
  • [3]Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005; 5(8):617-28.
  • [4]Shlomchik MJ, Weisel F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev. 2012; 247(1):52-63.
  • [5]Butler NS, Harris TH, Blader IJ. Regulation of immunopathogenesis during Plasmodium and Toxoplasma infections: more parallels than distinctions? Trends Parasitol. 2013; 29(12):593-602.
  • [6]Badiee A, Heravi Shargh V, Khamesipour A, Jaafari MR. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends. Vaccine. 2013; 31(5):735-49.
  • [7]Desombere I, Willems A, Gijbels Y, Leroux-Roels G. Partial delipidation improves the T-cell antigenicity of hepatitis B virus surface antigen. J Virol. 2006; 80(7):3506-14.
  • [8]Ma BJ, Alam SM, Go EP, Lu X, Desaire H, Tomaras GD et al.. Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies. PLoS Pathog. 2011; 7(9):e1002200.
  • [9]Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Sridhar S, Habermann S et al.. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ (Clinical research ed). 2014; 349:g4643.
  • [10]Lehtinen M, Dillner J. Clinical trials of human papillomavirus vaccines and beyond. Nat Rev Clin Oncol. 2013; 10(7):400-10.
  • [11]Glass RI, Parashar U, Patel M, Gentsch J, Jiang B. Rotavirus vaccines: successes and challenges. J Infect. 2014; 68 Suppl 1:S9-18.
  • [12]Sadanand S. Vaccination: the present and the future. Yale J Biol Med. 2011; 84(4):353-9.
  • [13]Coban C, Kobiyama K, Jounai N, Tozuka M, Ishii KJ. DNA vaccines: a simple DNA sensing matter? Hum Vaccin Immunother. 2013; 9(10):2216-21.
  • [14]Mabbott NA. Prospects for safe and effective vaccines against prion diseases. Expert Rev Vaccines. 2014;1–4.
  • [15]Galson JD, Pollard AJ, Trück J, Kelly DF. Studying the antibody repertoire after vaccination: practical applications. Trends Immunol. 2014; 35(7):319-31.
  • [16]Gras S, Burrows SR, Turner SJ, Sewell AK, McCluskey J, Rossjohn J. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol Rev. 2012; 250(1):61-81.
  • [17]Busch R, De Riva A, Hadjinicolaou AV, Jiang W, Hou T, Mellins ED. On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev Mol Med. 2012; 14: Article ID e15
  • [18]Shastri N, Nagarajan N, Lind KC, Kanaseki T. Monitoring peptide processing for MHC class I molecules in the endoplasmic reticulum. Curr Opin Immunol. 2014; 26:123-7.
  • [19]Thaunat O. Humoral immunity in chronic allograft rejection: puzzle pieces come together. Transpl Immunol. 2012; 26(2-3):101-6.
  • [20]Malik B, Rath G, Goyal AK. Are the anatomical sites for vaccine administration selected judiciously? Int Immunopharmacol. 2014; 19(1):17-26.
  • [21]Pavot V, Rochereau N, Genin C, Verrier B, Paul S. New insights in mucosal vaccine development. Vaccine. 2012; 30(2):142-54.
  • [22]Kraehenbuhl JP, Neutra MR. Mucosal vaccines: where do we stand? Curr Top Med Chem. 2013; 13(20):2609-28.
  • [23]Neyt K, Perros F, GeurtsvanKessel CH, Hammad H, Lambrecht BN. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012; 33(6):297-305.
  • [24]Garraud O, Perraut R, Riveau G, Nutman TB. Class and subclass selection in parasite-specific antibody responses. Trends Parasitol. 2003; 19(7):300-4.
  • [25]Noranate N, Prugnolle F, Jouin H, Tall A, Marrama L, Sokhna C et al.. Population diversity and antibody selective pressure to Plasmodium falciparum MSP1 block2 locus in an African malaria-endemic setting. BMC Microbiol. 2009; 9:219. BioMed Central Full Text
  • [26]Muller S. Avoiding deceptive imprinting of the immune response to HIV-1 infection in vaccine development. Int Rev Immunol. 2004; 23(5-6):423-36.
  • [27]Jefferis R. Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys. 2012; 526(2):159-66.
  • [28]Diallo TO, Spiegel A, Diouf A, Lochouarn L, Kaslow DC, Tall A et al.. Short report: differential evolution of immunoglobulin G1/G3 antibody responses to Plasmodium falciparum MSP1(19) over time in malaria-immune adult Senegalese patients. Am J Trop Med Hyg. 2002; 66(2):137-9.
  • [29]Garraud O, Mahanty S, Perraut R. Malaria-specific antibody subclasses in immune individuals: a key source of information for vaccine design. Trends Immunol. 2003; 24(1):30-5.
  • [30]Sjöval C, Zapf J, von Löhneysen L, Magorivska I, Biermann M, Janko C, et al. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systematic lupus erythematosus. Lupus. 2015;24(6):569–581.
  • [31]Goulabchand R, Vincent T, Batteux F, Eliaou JF, Guilpain P. Impact of autoantibody glycosylation in autoimmune diseases. Autoimmun Rev. 2014; 13(7):742-50.
  • [32]Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. Genetic polymorphisms linked to susceptibility to malaria. Malar J. 2011; 10:271. BioMed Central Full Text
  • [33]Panda S, Ding JL. Natural antibodies bridge innate and adaptive antibodies. J Immunol. 2015; 194(1):13-20.
  • [34]Jacobs JF, van dern Molen RG, Bossuyt X, Damoiseaux J. Antigen excess in modern immunoassay: to anticipate on the unexpected. Autoimmun Review. 2015; 14(2):160-7.
  • [35]Luchavez J, Baker J, Alcantara S, Belizario V, McCarty JS, Bell D. Laboratory demonstration of a prozone-like effect in HRP-2-detecting malaria rapid diagnostic tests: implication for clinical management. Malar J. 2011; 10:286. BioMed Central Full Text
  • [36]Chia WN, Goh YS, Renia L. Novel approaches to identify malaria vaccine candidates. Front Microbiol. 2014; 17:586.
  文献评价指标  
  下载次数:7次 浏览次数:13次