期刊论文详细信息
Particle and Fibre Toxicology
Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection
José de la Fuente5  Ana Domingos6  Pilar Alberdi4  José M Pérez de la Lastra4  Sabine Weisheit3  Rennos Fragkoudis3  Lesley Bell-Sakyi3  Juan A Moreno-Cid4  Juan Mosqueda2  Octavio Merino4  Sandra Antunes1 
[1] Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal;Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Juriquilla CP 76230, Querétaro Mexico;The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF UK;SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100 1349-008 Lisboa Portugal
关键词: Tick cell line;    Vaccine;    Capillary feeding;    Babesia;    Anaplasma;    Pathogen;    Tick;   
Others  :  814348
DOI  :  10.1186/1756-3305-7-42
 received in 2013-12-30, accepted in 2014-01-19,  发布年份 2014
PDF
【 摘 要 】

Background

Ticks represent a significant health risk to animals and humans due to the variety of pathogens they can transmit during feeding. The traditional use of chemicals to control ticks has serious drawbacks, including the selection of acaricide-resistant ticks and environmental contamination with chemical residues. Vaccination with the tick midgut antigen BM86 was shown to be a good alternative for cattle tick control. However, results vary considerably between tick species and geographic location. Therefore, new antigens are required for the development of vaccines controlling both tick infestations and pathogen infection/transmission. Tick proteins involved in tick-pathogen interactions may provide good candidate protective antigens for these vaccines, but appropriate screening procedures are needed to select the best candidates.

Methods

In this study, we selected proteins involved in tick-Anaplasma (Subolesin and SILK) and tick-Babesia (TROSPA) interactions and used in vitro capillary feeding to characterize their potential as antigens for the control of cattle tick infestations and infection with Anaplasma marginale and Babesia bigemina. Purified rabbit polyclonal antibodies were generated against recombinant SUB, SILK and TROSPA and added to uninfected or infected bovine blood to capillary-feed female Rhipicephalus (Boophilus) microplus ticks. Tick weight, oviposition and pathogen DNA levels were determined in treated and control ticks.

Results

The specificity of purified rabbit polyclonal antibodies against tick recombinant proteins was confirmed by Western blot and against native proteins in tick cell lines and tick tissues using immunofluorescence. Capillary-fed ticks ingested antibodies added to the blood meal and the effect of these antibodies on tick weight and oviposition was shown. However, no effect was observed on pathogen DNA levels.

Conclusions

These results highlighted the advantages and some of the disadvantages of in vitro tick capillary feeding for the characterization of candidate tick protective antigens. While an effect on tick weight and oviposition was observed, the effect on pathogen levels was not evident probably due to high tick-to-tick variations among other factors. Nevertheless, these results together with previous results of RNA interference functional studies suggest that these proteins are good candidate vaccine antigens for the control of R. microplus infestations and infection with A. marginale and B. bigemina.

【 授权许可】

   
2014 Antunes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710032459983.pdf 3257KB PDF download
Figure 6. 45KB Image download
Figure 5. 43KB Image download
Figure 4. 45KB Image download
Figure 3. 98KB Image download
Figure 2. 52KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Jongejan F, Uilenberg G: The global importance of ticks. Parasitology 2004, 129:S3-S14.
  • [2]Estrada-Peña A, Bouattour A, Camicas JL, Guglielmone A, Horak I, Jongejan F, Latif A, Pegram R, Walker AR: The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Exp Appl Acarol 2006, 38:219-235.
  • [3]Peter RJ, Van den Bossche P, Penzhorn BL, Sharp B: Tick, fly, and mosquito control- lessons from the past, solutions for the future. Vet Parasitol 2005, 132:205-215.
  • [4]Graf JF, Gogolewski R, Leach-Bing N, Sabatini GA, Molento MB, Bordin EL, Arantes GJ: Tick control: an industry point of view. Parasitology 2004, 129:S427-S442.
  • [5]de la Fuente J: Vaccines for vector control: exciting possibilities for the future. Vet J 2012, 194:139-140.
  • [6]de la Fuente J, Almazán C, Canales M, Pérez de la Lastra JM, Kocan KM, Willadsen P: A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev 2007, 8:23-28.
  • [7]Almazán C, Lagunes R, Villar M, Canales M, Rosario-Cruz R, Jongejan F, de la Fuente J: Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitol Res 2010, 106:471-479.
  • [8]de la Fuente J, Blouin EF, Manzano-Roman R, Naranjo V, Almazán C, Pérez de la Lastra JM, Zivkovic Z, Jongejan F, Kocan KM: Functional genomic studies of tick cells in response to infection with the cattle pathogen Anaplasma marginale. Genomics 2007, 90:712-722.
  • [9]Zivkovic Z, Torina A, Mitra R, Alongi A, Scimeca S, Kocan KM, Galindo RC, Almazán C, Blouin EF, Villar M, Nijhof AM, Mani R, la Barbera G, Caracappa S, Jongejan F, de la Fuente J: Subolesin expression in response to pathogen infection in ticks. BMC Immunol 2010, 11:7. BioMed Central Full Text
  • [10]Zivkovic Z, Esteves E, Almazán C, Daffre S, Nijhof AM, Kocan KM, Jongejan F, de la Fuente J: Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus) microplus in response to infection with Anaplasma marginale. BMC Genomics 2010, 11:186. BioMed Central Full Text
  • [11]Antunes S, Galindo R, Almazan C, Rudenko N, Golovchenko M, Grubhoffer L, Shkap V, do Rosário V, de la Fuente J, Domingos A: Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int J Parasitol 2012, 42:187-195.
  • [12]de la Fuente J, Merino O: Vaccinomics, the new road to tick vaccines. Vaccine 2013, 31:5923-5929.
  • [13]Rau U, Hannoun C: The use of a capillary-tube technique for artificially feeding Argas reflexus reflexus ticks. Bull World Health Organ 1968, 39:332-333.
  • [14]Inokuma H, Kemp DH: Establishment of Boophilus microplus infected with Babesia bigemina by using in vitro tube feeding technique. J Vet Med Sci 1998, 60:509-512.
  • [15]Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF: Infection and transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by artificial feeding. Vector Borne Zoonotic Dis 2001, 1:45-53.
  • [16]Sonenshine DE, Ceraul S, Hynes W, Macaluso KR, Azad AF: Expression of defensin-like peptides in tick hemolymph and midgut in response to challenge with Borrelia burgdorferi, Escherichia coli and Bacillus subtilis. Exp Appl Acarol 2002, 28:127-134.
  • [17]de la Fuente J, Almazán C, Van Den Busche RA, Bowman J, Yoshioka JH, Kocan KM: Characterization of genetic diversity in two populations of Dermacentor andersoni (Acari: Ixodidae). Exp Parasitol 2005, 109:16-26.
  • [18]Kocan KM, Yoshioka J, Sonenshine DE, de la Fuente J, Ceraul SM, Blouin EF, Almazán C: Capillary tube feeding system for studying tick-pathogen interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). J Med Entomol 2005, 42:864-874.
  • [19]Kröber T, Guerin PM: In vitro feeding assays for hard ticks. Trends Parasitol 2007, 23:445-449.
  • [20]Matsuo T, Inoue N, Ruheta MR, Taylor D, Fujisaki K: Tickcidal effect of monoclonal antibodies against hemocytes, Om21, in an adult female tick, Ornithodoros moubata (Acari: Argasidae). J Parasitol 2004, 90:715-720.
  • [21]Almazán C, Blas-Machado U, Kocan KM, Yoshioka J, Blouin EF, Mangold AJ, de la Fuente J: Characterization of three Ixodes scapularis cDNAs protective against tick infestations. Vaccine 2005, 23:4403-4416.
  • [22]Gonsioroski AV, Bezerra IA, Utiumi KU, Driemeier D, Farias SE, da Silva Vaz I, Masuda A: Anti-tick monoclonal antibody applied by artificial capillary feeding in Rhipicephalus (Boophilus) microplus females. Exp Parasitol 2012, 130:359-363.
  • [23]Fragoso-Sanchez H, Garcia-Vazquez Z, Tapia-Perez G, Ortiz-Najera A, Rosario-Cruz R, Rodriguez-Vivas I: Response of Mexican Rhipicephalus (Boophilus) microplus ticks to selection by amitraz and genetic analysis of attained resistance. J Entomol 2011, 8:218-228.
  • [24]Mosqueda J, Ramos JA, Falcon A, Alvarez JA, Aragon V, Figueroa JV: Babesia bigemina: Sporozoite isolation from Boophilus microplus nymphs and initial immunomolecular characterization. Ann N Y Acad Sci 2004, 1026:222-231.
  • [25]Merino O, Almazán C, Canales M, Villar M, Moreno-Cid JA, Estrada-Peña A, Kocan KM, de la Fuente J: Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine 2011, 29:2248-2254.
  • [26]Bell-Sakyi L: Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J Comp Pathol 2004, 130:285-293.
  • [27]Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ: Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol 1994, 80:533-543.
  • [28]Kurtti TJ, Munderloh UG, Andreadis TG, Magnarelli LA, Mather TN: Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis. J Inv Path 1996, 67:318-321.
  • [29]Munderloh UG, Kurtti TJ: Formulation of medium for tick cell culture. Exp Appl Acarol 1989, 7:219-229.
  • [30]Rodríguez-Hernández E, Mosqueda J, Álvarez-Sánchez ME, Falcón Neri A, Mendoza-Hernández G, Camacho-Nuez M: The identification of a VDAC-like protein involved in the interaction of Babesia bigemina sexual stages with Rhipicephalus microplus midgut cells. Vet Parasitol 2012, 187:538-541.
  • [31]Ocampo Espinoza V, Vázquez JE, Aguilar MD, Ortiz MA, Alarcón GJ, Rodríguez SD: Anaplasma marginale: lack of cross-protection between strains that share MSP1a variable region and MSP4. Vet Microbiol 2006, 114:34-40.
  • [32]Nijhof AM, Taoufik A, de la Fuente J, Kocan KM, de Vries E, Jongejan F: Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. Int J Parasitol 2007, 37:653-662.
  • [33]Merino O, Almazán C, Canales M, Villar M, Moreno-Cid JA, Galindo RC, de la Fuente J: Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine 2011, 29:8575-8579.
  • [34]de la Fuente J, Almazán C, Blas-Machado U, Naranjo V, Mangold AJ, Blouin EF, Gortazar C, Kocan KM: The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine 2006, 24:4082-4095.
  • [35]Merino M, Antunes S, Mosqueda J, Moreno-Cid JA, Pérez de la Lastra JM, Rosario-Cruz R, Rodríguez S, Domingos A, de la Fuente J: Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine 2013, 31:5889-5896.
  • [36]de la Fuente J, Moreno-Cid JA, Canales M, Villar M, Pérez de la Lastra JM, Kocan KM, Galindo RC, Almazán C, Blouin EF: Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet Parasitol 2011, 181:17-22.
  • [37]Hajdusek O, Šíma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, Kopáček P: Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol 2013, 3:26.
  • [38]Naranjo N, Ayllón N, de la Lastra JM P, Galindo RC, Kocan KM, Blouin EF, Mitra R, Alberdi P, Villar M, de la Fuente J: Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, Ixodes scapularis. PLoS ONE 2013, 8:e65915.
  • [39]Merino O, Alberdi P, Pérez de la Lastra JM, de la Fuente J: Tick vaccines and the control of tick-borne pathogens. Front Cell Infect Microbiol 2013, 3:30.
  • [40]Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E: TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 2004, 119:457-468.
  • [41]Hovius JW, van Dam AP, Fikrig E: Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol 2007, 23:434-438.
  • [42]Hayashi CY, Lewis RV: Molecular architecture and evolution of a modular spider silk protein gene. Science 2000, 287:1477-1479.
  • [43]Alarcon-Chaidez FJ, Sun J, Wikel SK: Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem Mol Biol 2007, 37:48-71.
  • [44]Santos IK, Valenzuela JG, Ribeiro JM, de Castro M, Costa JN, Costa AM, da Silva ER, Neto OB, Rocha C, Daffre S, Ferreira BR, da Silva JS, Szabó MP, Bechara GH: Gene discovery in Boophilus microplus, the cattle tick: the transcriptomes of ovaries, salivary glands, and hemocytes. Ann N Y Acad Sci 2004, 1026:242-246.
  • [45]Mulenga A, Blandon M, Khumthong R: The molecular basis of the Amblyomma americanum tick attachment phase. Exp Appl Acarol 2007, 41:267-287.
  • [46]de la Fuente J, Rodríguez M, Redondo M, Montero C, García-García JC, Méndez L, Serrano E, Valdés M, Enríquez A, Canales M, Ramos E, de Armas CA, Rey S, Rodríguez JL, Artiles M, García L: Field studies and cost-effectiveness analysis of vaccination with Gavac™ against the cattle tick Boophilus microplus. Vaccine 1998, 16:366-373.
  • [47]Popara M, Villar M, Mateos-Hernández L, de Mera IG F, Marina A, del Valle M, Almazán C, Domingos A, de la Fuente J: Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to R. microplus. Vaccine 2013, 31:4728-4735.
  • [48]Moreno-Cid JA, de la Lastra JM P, Villar M, Jiménez M, Pinal R, Estrada-Peña A, Alarcón P, Delacour S, Oropeza V, Ruiz I, Molina R, Lucientes J, Prudencio CR, Galindo RC, Almazán C, Nijhof AM, Mangold AJ, Gortázar C, de la Fuente J: Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine 2013, 31:1187-1196.
  • [49]Lew-Tabor AE, Kurscheid S, Barrero R, Gondro C, Moolhuijzen PM, Rodriguez Valle M, Morgan JA, Covacin C, Bellgard MI: Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of Ubiquitin-63E in the cattle tick Rhipicephalus microplus. Int J Parasitol 2011, 41:1001-1014.
  • [50]de la Fuente J, Maritz-Olivier C, Naranjo V, Ayoubi P, Nijhof AM, Almazán C, Canales M, de la Lastra JM P, Galindo RC, Blouin EF, Gortazar C, Jongejan F, Kocan KM: Evidence of the role of tick subolesin in gene expression. BMC Genomics 2008, 9:372. BioMed Central Full Text
  • [51]Torina A, Moreno-Cid JA, Blanda V, de Mera IG F, de la Lastra JM P, Scimeca S, Blanda M, Scariano ME, Briganò S, Disclafani R, Piazza A, Vicente J, Gortázar C, Caracappa S, Lelli RC, de la Fuente J: Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasites Vectors 2014, 7:10. BioMed Central Full Text
  文献评价指标  
  下载次数:30次 浏览次数:17次