期刊论文详细信息
BMC Pregnancy and Childbirth
Soluble receptors for advanced glycation end products and receptor activator of NF-κB ligand serum levels as markers of premature labor
Andrzej Torbé2  Wioletta Mikołajek-Bedner2  Sebastian Kwiatkowski2  Leszek Domański1  Marta Budkowska3  Aleksandra Rajewska2  Daria Sałata3  Barbara Dołęgowska3  Rafał Rzepka2 
[1] Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland;Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland;Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
关键词: pPROM;    Chronic inflammation;    sRANKL;    Soluble receptors for advanced glycation end products;    Preterm labor;   
Others  :  1215953
DOI  :  10.1186/s12884-015-0559-3
 received in 2014-12-14, accepted in 2015-05-18,  发布年份 2015
PDF
【 摘 要 】

Background

This study aimed to determine the relationships between secretory and endogenous secretory receptors for advanced glycation end products (sRAGE, esRAGE), sRANKL, osteoprotegerin and the interval from diagnosis of threatened premature labor or premature rupture of the fetal membranes to delivery, and to evaluate the prognostic values of the assessed parameters for preterm birth.

Methods

Ninety women between 22 and 36 weeks’ gestation were included and divided into two groups: group A comprised 41 women at 22 to 36 weeks’ gestation who were suffering from threatened premature labor; and group B comprised 49 women at 22 to 36 weeks’ gestation with preterm premature rupture of the membranes. Levels of sRAGE, esRAGE, sRANKL, and osteoprotegerin were measured. The Mann–Whitney test was used to assess differences in parameters between the groups. For statistical analysis of relationships, correlation coefficients were estimated using Spearman’s test. Receiver operating characteristics were used to determine the cut-off point and predictive values.

Results

In group A, sRAGE and sRANKL levels were correlated with the latent time from symptoms until delivery (r = 0.422; r = −0.341, respectively). The sensitivities of sRANKL and sRAGE levels for predicting preterm delivery were 0.895 and 0.929 with a negative predictive value (NPV) of 0.857 and 0.929, respectively. In group B, sRAGE and sRANKL levels were correlated with the latent time from pPROM until delivery (r = 0.381; r = −0.439). The sensitivity of sRANKL and sRAGE for predicting delivery within 24 h after pPROM was 0.682 and 0.318, with NPVs of 0.741 and 0.625, respectively. Levels of esRAGE and sRANKL were lower in group A than in group B (median = 490.2 vs 541.1 pg/mL; median = 6425.0 vs 11362.5 pg/mL, respectively).

Conclusions

Correlations between sRAGE, sRANKL, and pregnancy duration after the onset of symptoms suggest their role in preterm delivery. The high prognostic values of these biomarkers indicate their usefulness in diagnosis of pregnancies with threatened premature labor.

【 授权许可】

   
2015 Rzepka et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150626020411643.pdf 995KB PDF download
Fig. 6. 24KB Image download
Fig. 5. 66KB Image download
Fig. 4. 62KB Image download
Fig. 3. 47KB Image download
Fig. 2. 52KB Image download
Fig. 1. 69KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Zou L, Wang X, Ruan Y, Li G, Chen Y, Zhang W. Preterm birth and neonatal mortality in China in 2011. Int J Gynaecol Obstet. 2014; http://dx.doi.org/10.1016/j.ijgo.2014.06.018.
  • [2]Vitale SG, Marilli I, Rapisarda AM, Rossetti D, Belluomo G, Iapichino V et al.. Cellular and biochemical mechanisms, risk factors and management of preterm birth: state of the art. Minerva Ginecol. 2014; 66:589-95.
  • [3]Passini R, Cecatti JG, Lajos GJ, Tedesco RP, Nomura ML, Dias TZ et al.. Brazilian Multicentre Study on Preterm Birth (EMIP): prevalence and factors associated with spontaneous preterm birth. PLoS ONE. 2014; 9(10):e109069.
  • [4]Bastek JA, Sammel MD, Jackson TD, Ryan ME, McShea MA, Elovitz MA. Environmental variables as potential modifiable risk factors of preterm birth in Philadelphia. Am J Obstet Gynecol. 2015; 212:e1-10.
  • [5]Grieger JA, Grzeskowiak LE, Clifton VL. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J Nutr. 2014; 144:1075-80.
  • [6]Vrachnis N, Vitoratos N, Iliodromiti Z, Sifakis S, Deligeoroglou E, Creatsas G. Intrauterine inflamation and preterm delivery. Ann NY Acad Sci. 2010; 1205:188-22.
  • [7]Rzepka R, Torbé A, Czajka R, Kwiatkowski S, Bartoszek M, Cymbaluk A. Rapid assessment of the IL-6 cervico-vaginal fluid level in threatening preterm labor. Ginekol Pol. 2009; 80:678-81.
  • [8]Torbé A, Czajka R, Kordek A, Rzepka R, Kwiatkowski S, Rudnicki J. Maternal serum proinflammatory cytokines in preterm labor with intact membranes: neonatal outcome and histological associations. Eur Cytokine Netw. 2007; 18:102-7.
  • [9]Perales-Puchalt A, Brik M, Diago VJ, Perales A. The negative predictive value of cervical interleukin-6 for the risk assessment of preterm birth. J Matern Fetal Neonatal Med. 2013; 26:1278-81.
  • [10]Timmons BC, Reese J, Socrate S, Ehinger N, Paria BC, Milne GL et al.. Prostaglandins are essential for cervical ripening in LPS-mediated preterm birth but not term or antiprogestin-driven preterm ripening. Endocrinology. 2014; 155:287-98.
  • [11]Lockwood CL, Senyei AE, Dische M. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. N Engl J Med. 1991; 325:669-74.
  • [12]Lories RJ, Luyten FP. Osteoprotegerin and osteoprotegerin-ligand balance: a new paradigm in bone metabolism providing new therapeutic targets. Clin Rheumatol. 2001; 20:3-9.
  • [13]Martin TJ. Paracrine regulation of osteoclast formation and activity: milestones in discovery. J Musculoskelet Neuronal Interact. 2004; 4:243-53.
  • [14]Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol. 2002; 22:549-53.
  • [15]Abedin M, Omland T, Ueland T, Khera A, Aukrust P, Murphy SA et al.. Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study). Am J Cardiol. 2007; 99:513-8.
  • [16]Olesen P, Ledet T, Rasmussen LM. Arterial osteoprotegerin: increased amounts in diabetes and modifiable synthesis from vascular smooth muscle cells by insulin and TNF-alpha. Diabetologia. 2005; 48:561-8.
  • [17]Rasmussen LM, Ledet T. Osteoprotegerin and diabetic macroangiopathy. Horm Metab Res. 2005; 37 Suppl 1:90-4.
  • [18]Rogers A, Eastell R. Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab. 2005; 90:6323-31.
  • [19]Rogers A, Saleh G, Hannon RA, Greenfield D, Eastell R. Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women. J Clin Endocrinol Metab. 2002; 87:4470-5.
  • [20]Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W et al.. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol. 2000; 157:435-48.
  • [21]Ikeda T, Kasai M, Utsuyama M, Hirokawa K. Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology. 2001; 142:1419-26.
  • [22]Suzuki J, Ikeda T, Kuroyama H, Seki S, Kasai M, Utsuyama M et al.. Regulation of osteoclastogenesis by three human RANKL isoforms expressed in NIH3T3 cells. Biochem Biophys Res Commun. 2004; 314:1021-7.
  • [23]Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N et al.. Identify of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998; 139:1329-77.
  • [24]Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 1999; 25:255-9.
  • [25]Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K et al.. Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem. 1998; 273:27091-6.
  • [26]Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014; 5:511.
  • [27]Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER et al.. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997; 390:175-9.
  • [28]Iwamoto K, Miyamoto T, Sawatani Y, Hosogane N, Hamaguchi I, Takami M et al.. Dimer formation of receptor activator of nuclear factor kappaB induces incomplete osteoclast formation. Biochem Biophys Res Commun. 2004; 325:229-34.
  • [29]Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Medscape Womens Health. 2000; 5:5.
  • [30]Fu Q, Jilka RL, Manolagas SC, O’Brien CA. Parathyroid hormone stimulates receptor activator of NFkappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein. J Biol Chem. 2002; 277:48868-75.
  • [31]Ramasamy R, Shi Fang Y, Herold K, Clynes R, Schmidt AM. Receptor for advanced glycation end products. Fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann NY Acad Sci. 2008; 1126:7-13.
  • [32]Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C et al.. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002; 105:816-22.
  • [33]Ding Q, Keller JN. Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta. 2005; 1746:18-27.
  • [34]Hanford LE, Enghild JJ, Valnickova Z, Petersen SV, Schaefer LM, Schaefer TM et al.. Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem. 2004; 279:50019-24.
  • [35]Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H et al.. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003; 370:1097-109.
  • [36]Romero R, Miranda J, Chaiworapongsa T, Korzeniewski SJ, Chaemsaithong P, Gotsch F et al.. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014; 72:458-74.
  • [37]Dubicke A, Andersson P, Fransson E, Andersson E, Sioutas A, Malmström A et al.. High-mobility group box protein 1 and its signalling receptors in human preterm and term cervix. J Reprod Immunol. 2010; 84:86-94.
  • [38]Buhimschi CS, Baumbusch MA, Dulay AT, Oliver EA, Lee S, Zhao G et al.. Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol. 2009; 175:958-75.
  • [39]Romero R, Espinoza J, Hassan S, Gotsch F, Kusanovic JP, Avila C et al.. Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: modulation by infection and inflammation. J Perinat Med. 2008; 36:388-98.
  • [40]Romero R, Chaiworapongsa T, Savasan ZA, Hussein Y, Dong Z, Kusanovic JP et al.. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012; 25:558-67.
  • [41]Hájek Z, Germanová A, Koucký M, Zima T, Kopecký P, Vítkova M et al.. Detection of feto-maternal infection/inflammation by the soluble receptor for advanced glycation end products (sRAGE): results of a pilot study. J Perinat Med. 2008; 36:399-404.
  • [42]Bastek JA, Brown AG, Foreman MN, McShea MA, Anglim LM, Adamczak JE et al.. The soluble receptor for advanced glycation end products can prospectively identify patients at greatest risk for preterm birth. J Matern Fetal Neonatal Med. 2012; 25:1762-8.
  • [43]Knevel R, de Rooy DP, Saxne T, Lindqvist E, Leijsma MK, Daha NA et al.. A genetic variant in osteoprotegerin is associated with progression of joint destruction in rheumatoid arthritis. Arthritis Res Ther. 2014; 16:R108. BioMed Central Full Text
  • [44]Geusens P. The role of RANK ligand/osteoprotegerin in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2012; 4:225-33.
  • [45]Xu S, Wang Y, Lu J, Xu J. Osteoprotegerin and RANKL in the pathogenesis of rheumatoid arthritis-induced osteoporosis. Rheumatol Int. 2012; 32:3397-403.
  • [46]Xi L, Cao H, Chen Y. OPG/RANK/RANKL axis in atrial fibrillation. Cardiology. 2013; 125:174-5.
  • [47]Irtiuga OB, Zhiduleva EV, Dubrovskaia OB, Moiseeva OM. Concentration of osteoprotegerin and RANKL in blood serum of patients with aortic stenosis. Kardiologiia. 2014; 54:44-8.
  • [48]Mori K, Le Goff B, Berreur M, Riet A, Moreau A, Blanchard F et al.. Human osteosarcoma cells express functional receptor activator of nuclear factor-kappa B. J Pathol. 2007; 211:555-62.
  • [49]Mori K, Berreur M, Blanchard F, Chevalier C, Guisle-Marsollier I, Masson M et al.. Receptor activator of nuclear factor-kappaB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep. 2007; 18:1365-71.
  • [50]Briana DD, Boutsikou M, Boutsikou T, Malamitsi-Puchner A. Relationships between maternal novel adipocytokines and bone biomarkers in complicated by gestational hypertensive disorders and normal pregnancies. J Matern Fetal Neonatal Med. 2013; 26:1219-22.
  • [51]Shen P, Gong Y, Wang T, Chen Y, Jia J, Ni S et al.. Expression of osteoprotegerin in placenta and its association with preeclampsia. PLoS ONE. 2012; 7:e44340.
  • [52]Vitoratos N, Lambrinoudaki I, Rizos D, Armeni E, Alexandrou A, Creatsas G. Maternal circulating osteoprotegerin and soluble RANKL in pre-eclamptic women. Eur J Obstet Gynecol Reprod Biol. 2011; 154:141-5.
  • [53]Dorota DK, Bogdan KG, Mieczyslaw G, Bozena LG, Jan O. The concentrations of markers of bone turnover in normal pregnancy and preeclampsia. Hypertens Pregnancy. 2012; 31:166-76.
  • [54]Briana DD, Boutsikou M, Baka S, Hassiakos D, Gourgiotis D, Malamitsi-Puchner A. Circulating osteoprotegerin and sRANKL concentrations in the perinatal period at term. The impact of intrauterine growth restriction. Neonatology. 2009; 96:132.
  • [55]Madarász E, Tamás G, Tabák AG, Speer G, Lakatos P, Kerényi Z. Osteoprotegerin levels in women with prior gestational diabetes mellitus. Diabetes Care. 2009; 32:e5.
  • [56]Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J et al.. Advanced glycation end products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for accelerated vasculopathy of diabetes. J Clin Invest. 1995; 96:1395-403.
  • [57]Fujisawa K, Katakami N, Kaneto H, Naka T, Takahara M, Sakamoto F et al.. Circulating soluble RAGE as a predictive biomarker of cardiovascular event risk in patients with type 2 diabetes. Atherosclerosis. 2013; 227:425-8.
  • [58]Grossin N, Wautier MP, Meas T, Guillausseau PJ, Massin P, Wautier JL. Severity of diabetic microvascular complications is associated with a low soluble RAGE level. Diabetes Metab. 2008; 34:392-5.
  • [59]Daffu G, del Pozo CH, O’Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci. 2013; 14:19891-910.
  • [60]Colhoun HM, Betteridge DJ, Durrington P, Hitman G, Neil A, Livingstone S et al.. Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial. Diabetes. 2011; 60:2379-85.
  • [61]Piarulli F, Lapolla A, Ragazzi E, Susana A, Sechi A, Nollino L et al.. Role of endogenous secretory RAGE (esRAGE) in defending against plaque formation induced by oxidative stress in type 2 diabetic patients. Atherosclerosis. 2013; 226:252-7.
  • [62]Moy KA, Jiao L, Freedman ND, Weinstein SJ, Sinha R, Virtamo J et al.. Soluble receptor for advanced glycation end products and risk of liver cancer. Hepatology. 2013; 57:2338-45.
  • [63]Rzepka R, Dołęgowska B, Rajewska A, Kwiatkowski S. On the significance of new biochemical markers for the diagnosis of premature labour. Mediators of Inflammation. 2014; doi:10.1155/2014/251451.
  • [64]Bierhaus A, Stern DM, Nawroth PP. RAGE in inflammation: a new therapeutic target? Curr Opin Investig Drugs. 2006; 7:985-91.
  • [65]Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001; 280:685-94.
  • [66]Germanová A, Muravská A, Jáchymová M, Hájek Z, Koucký M, Mestek O et al.. Receptor for advanced glycation end products (RAGE) and glyoxalase I gene polymorphisms in pathological pregnancy. Clin Biochem. 2012; 45:1409-14.
  • [67]Laresgoiti-Servitje E. A leading role for the immune system in the pathophysiology of preeclampsia. J Leukoc Biol. 2013; 94:247-57.
  • [68]Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014; http://dx.doi.org/10.1126/science.1251816.
  • [69]Bredeson S, Papaconstantinou J, Deford JH, Kechichian T, Syed TA, Saade GR et al.. HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS ONE. 2014; 3:e113799.
  • [70]Menon R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front Immunol. 2014; 5:567.
  • [71]Menon R, Boldogh I, Hawkins HK, Woodson M, Polettini J, Syed TA et al.. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am J Pathol. 2014; 184:1740-51.
  • [72]Liong S, Di Quinzio M, Fleming G, Permezel M, Rice G, Georgiou H. New biomarkers for the prediction of spontaneous preterm labour in symptomatic pregnant women: a comparison with fetal fibronectin. BJOG. 2015; 122:370.
  • [73]van Baaren GJ, Vis JY, Wilms FF, Oudijk MA, Kwee A, Porath MM et al.. Predictive value of cervical length measurement and fibronectin testing in threatened preterm labor. Obstet Gynecol. 2014; 123:1185-92.
  • [74]Melamed N, Hiersch L, Domniz N, Maresky A, Bardin R, Yogev Y. Predictive value of cervical length in women with threatened preterm labor. Obstet Gynecol. 2013; 122:1279-87.
  • [75]Anwar A, Lindow SW, Greaves L, Hall S, Jha R. The use of fetal fibronectin in suspected pre-term labour. J Obstet Gynaecol. 2014; 34:45-7.
  • [76]Boots AB, Sanchez-Ramos L, Bowers DM, Kaunitz AM, Zamora J, Schlattmann P. The short-term prediction of preterm birth: a systematic review and diagnostic metaanalysis. Am J Obstet Gynecol. 2014; 210:54.e1–54.e10.
  • [77]Honest H, Hyde CJ, Khan KS. Prediction of spontaneous preterm birth: no good test for predicting a spontaneous preterm birth. Curr Opin Obstet Gynecol. 2012; 24:422-33.
  • [78]Abbott DS, Radford SK, Seed PT, Tribe RM, Shennan AH. Evaluation of a quantitative fetal fibronectin test for spontaneous preterm birth in symptomatic women. Am J Obstet Gynecol. 2013; 208:122.e.1–e.6.
  • [79]Di Renzo GC, Giardina I, Coata G, Di Tommaso M, Facchinetti F, Petraglia F et al.. Identification of preterm labor: the role of the fibronectin and ultrasound cervicometry and their association. Minerva Ginecol. 2011; 63:477-82.
  • [80]Blencowe H, Cousens S, Oestergaard M, Chou D, Moller AB, Narwal R et al.. National, regional and worldwide estimates of preterm birth. Lancet. 2012; 379:2162-72.
  • [81]Lannon SM, Vanderhoeven JP, Eschenbach DA, Gravett MG, Adams Waldorf KM. Synergy and interactions among biological pathways leading to preterm premature rupture of membranes. Reprod Sci. 2014; 21:1215-27.
  • [82]Dagklis T, Petousis S, Margioula-Siarkou C, Mavromatidis G, Kalogiannidis I, Prapas N et al.. Parameters affecting latency period in PPROM cases: a 10-year experience of a single institution. J Matern Fetal Neonatal Med. 2013; 26:1455-8.
  • [83]Simhan HN, Canavan TP. Preterm premature rupture of membranes: diagnosis, evaluation and management strategies. BJOG. 2005; 112 Suppl 1:32-7.
  文献评价指标  
  下载次数:39次 浏览次数:14次