期刊论文详细信息
BMC Evolutionary Biology
Winding up the molecular clock in the genus Carabus (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation
Jesús Gómez-Zurita2  José Serrano1  Carmelo Andújar1 
[1] Departamento de Zoología y Antropología Física. Facultad de Veterinaria, Universidad de Murcia, 30071 Murcia, Spain;Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
关键词: Carabus;    Coleoptera;    Nuclear genes;    Mitochondrial genes;    Gblocks;    Outgroup selection;    Clock model;    Partitioning model;    Deep node ages;    Rates of molecular evolution;    Molecular clock;   
Others  :  1141269
DOI  :  10.1186/1471-2148-12-40
 received in 2011-12-01, accepted in 2012-03-28,  发布年份 2012
PDF
【 摘 要 】

Background

Rates of molecular evolution are known to vary across taxa and among genes, and this requires rate calibration for each specific dataset based on external information. Calibration is sensitive to evolutionary model parameters, partitioning schemes and clock model. However, the way in which these and other analytical aspects affect both the rates and the resulting clade ages from calibrated phylogenies are not yet well understood. To investigate these aspects we have conducted calibration analyses for the genus Carabus (Coleoptera, Carabidae) on five mitochondrial and four nuclear DNA fragments with 7888 nt total length, testing different clock models and partitioning schemes to select the most suitable using Bayes Factors comparisons.

Results

We used these data to investigate the effect of ambiguous character and outgroup inclusion on both the rates of molecular evolution and the TMRCA of Carabus. We found considerable variation in rates of molecular evolution depending on the fragment studied (ranging from 5.02% in cob to 0.26% divergence/My in LSU-A), but also on analytical conditions. Alternative choices of clock model, partitioning scheme, treatment of ambiguous characters, and outgroup inclusion resulted in rate increments ranging from 28% (HUWE1) to 1000% (LSU-B and ITS2) and increments in the TMRCA of Carabus ranging from 8.4% (cox1-A) to 540% (ITS2). Results support an origin of the genus Carabus during the Oligocene in the Eurasian continent followed by a Miocene differentiation that originated all main extant lineages.

Conclusions

The combination of several genes is proposed as the best strategy to minimise both the idiosyncratic behaviors of individual markers and the effect of analytical aspects in rate and age estimations. Our results highlight the importance of estimating rates of molecular evolution for each specific dataset, selecting for optimal clock and partitioning models as well as other methodological issues potentially affecting rate estimation.

【 授权许可】

   
2012 Andújar et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327013739627.pdf 3125KB PDF download
【 参考文献 】
  • [1]Bromham L, Penny D: The modern molecular clock. Nat Rev Genet 2003, 4:216-224.
  • [2]Brower AVZ: Rapid morphological radiation and convergence among races of the butterfly Heliconius erat inferred from patterns of mitochondrial-DNA evolution. Proc Nat Acad Sci USA 1994, 91:6491-6495.
  • [3]Pruser F, Mossakowski D: Low substitution rates in mitochondrial DNA in Mediterranean carabid beetles. Insect Mol Biol 1998, 7:121-128.
  • [4]Gómez-Zurita J, Juan C, Petitpierre E: The evolutionary history of the genus Timarch (Coleoptera, Chrysomelidae) inferred from mitochondrial COII Gene and partial 16S rDNA sequences. Mol Phylogenet Evol 2000, 14:304-317.
  • [5]Ruiz C, Jordal B, Serrano J: Molecular phylogeny of the tribe Sphodrini (Coleoptera: Carabidae) based on mitochondrial and nuclear markers. Mol Phylogenet Evol 2009, 50:44-58.
  • [6]Luchetti A, Marini M, Mantovani B: Mitochondrial evolutionary rate and speciation in termites: data on European Reticulitermes taxa (Isoptera, Rhinotermitidae). Insectes Soc 2005, 52:218-221.
  • [7]Contreras-Diaz HG, Moya O, Oromi P, Juan C: Evolution and diversification of the forest and hypogean ground-beetle genus Trechus in the Canary Islands. Mol Phylogenet Evol 2007, 42:687-699.
  • [8]Ribera I, Fresneda J, Bucur R, Izquierdo A, Vogler A, Salgado J, Cieslak A: Ancient origin of a Western Mediterranean radiation of subterranean beetles. BMC Evol Biol 2010, 10:29. BioMed Central Full Text
  • [9]Papadopoulou A, Anastasiou I, Vogler A: Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol Biol Evol 2010, 27:1659-1672.
  • [10]Kumar S: Molecular clocks: four decades of evolution. Nat Rev Genet 2005, 6:654-662.
  • [11]Mueller RL: Evolutionary rates, divergence dates, and the performance of mitochondrial genes in bayesian phylogenetic analysis. Syst Biol 2006, 55:289-300.
  • [12]Pons J, Ribera I, Bertranpetit J, Balke M: Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol Phylogenet Evol 2010, 56:796-807.
  • [13]Schwartz RS, Mueller RL: Variation in DNA substitution rates among lineages erroneously inferred from simulated clock-like data. PLoS One 2010, 5:e9649.
  • [14]Graur D, Martin W: Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 2004, 20:80-86.
  • [15]Heads M: Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics 2005, 21:62-78.
  • [16]Inoue J, Donoghue PCJ, Yang Z: The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol 2010, 59:74-89.
  • [17]Brown JM, Hedtke SM, Lemmon AR, Lemmon EM: When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Syst Biol 2010, 59:145-161.
  • [18]Schwartz RS, Mueller RL: Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks. BMC Evol Biol 2010., 10
  • [19]Aris-Brosou S, Yang Z: Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 2002, 51:703-714.
  • [20]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. Plos Biol 2006, 4:699-710.
  • [21]Battistuzzi FU, Filipski A, Hedges SB, Kumar S: Performance of relaxed-clock methods in estimating evolutionary divergence times and their credibility intervals. Mol Biol Evol 2010, 27:1289-1300.
  • [22]Battistuzzi FU, Billing-Ross P, Paliwal A, Kumar S: Fast and slow implementations of relaxed clock methods show similar patterns of accuracy in estimating divergence times. Mol Biol Evol 2011, 28:2439-2442.
  • [23]Brandley MC, Wang Y, Guo X, Montes de Oca AN, Fería Ortiz M, Hikida T, Ota H: Accommodating heterogenous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) Lizards. Syst Biol 2011, 6:3-15.
  • [24]Linder HP, Hardy CR, Rutschmann F: Taxon sampling effects in molecular clock dating: An example from the African Restionaceae. Mol Phylogenet Evol 2005, 35:569-582.
  • [25]Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM: The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst Biol 2009, 58:130-145.
  • [26]Su ZH, Tominaga O, Okamoto M, Osawa S: Origin and diversification of hindwingless Damaster ground beetles within the Japanese islands as deduced from mitochondrial ND5 gene sequences (Coleoptera, Carabidae). Mol Biol Evol 1998, 15:1026-1039.
  • [27]Tominaga O, Su ZH, Kim CG, Okamoto M, Imura Y, Osawa S: Formation of the Japanese carabina fauna inferred from a phylogenetic tree of mitochondrial ND5 gene sequences (Coleoptera, Carabidae). J Mol Evol 2000, 50:541-549.
  • [28]Deuve T: Illustrated Catalogue of the Genus Carabus of the World (Coleoptera: Carabidae. Sofia-Moscow: PENSOFT; 2004.
  • [29]Sota T, Ishikawa R: Phylogeny and life-history evolution in Carabus (subtribe Carabina: Coleoptera, Carabidae) based on sequences of two nuclear genes. Biol J Linn Soc 2004, 81:135-149.
  • [30]Arndt E, Brücker M, Marciniak K, Mossakowski D, Prüser F: Phylogeny. In The genus Carabus L. in Europe, a synthesis. Edited by Turin H, Penev L. Sofía-Moscow-Leiden: PENSOFT & European Invertebrate Survey; 2003:307-325.
  • [31]Sota T, Vogler AP: Incongruence of mitochondrial and nuclear gene trees in the Carabid beetles Ohomopterus. Syst Biol 2001, 50:39-59.
  • [32]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis (MEGA). Mol Biol Evol 2007, 24:1596-1599.
  • [33]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059-3066.
  • [34]Katoh K, Asimenos G, Toh H: Multiple alignment of DNA sequences with MAFFT. Bioinf DNA Seq Anal 2009, 537:39-64.
  • [35]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
  • [36]Farris JS, Kallersjo M, Kluge AG, Bult C: Testing significance of incongruence. Cladistics 1994, 10:315-319.
  • [37]Wheeler WC, Hayashi CY: The phylogeny of the extant chelicerate orders. Cladistics 1998, 14:173-192.
  • [38]Swofford DL: PAUP*. In Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates; 2000.
  • [39]Huelsenbeck JP, Ronquist F: MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [40]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [41]Posada D: jModelTest: Phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [42]Rambaut A, Drummond AJ: Tracer v1.5 2007. [http://beast.bio.ed.ac.uk/Tracer] webcite
  • [43]Rambaut A: FigTree v.1.1.2 2008. [http://tree.bio.ed.ac.uk/software/figtree/] webcite
  • [44]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007., 7
  • [45]Pagel M, Meade A: A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst Biol 2004, 53:571-581.
  • [46]Miller KB, Bergsten J, Whiting MF: Phylogeny and classification of the tribe Hydaticini (Coleoptera: Dytiscidae): partition choice for Bayesian analysis with multiple nuclear and mitochondrial protein-coding genes. Zool Scr 2009, 38:591-615.
  • [47]Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A: Time-dependent rates of molecular evolution. Mol Ecol 2011, 20:3087-3101.
  • [48]Rambaut A, Drummond AJ: TreeStat v1.6.1: tree statistic calculation tool. 2010.
  • [49]Ziegler PA: Evolution of the Arctic-North Atlantic and the Western Tethy. Tulsa, OK: American Association of Petroleum Geologists Memoir; 1988.
  • [50]Turin H, Penev L, Casale A: The Genus Carabus in Europe. A synthesis. Sofía-Moscow-Leiden: PENSOFT & European Invertebrate Survey; 2003.
  • [51]Su ZH, Imura Y, Okamoto M, Kim CG, Zhou HZ, Paik JC, Osawa S: Phylogeny and evolution of Digitulati ground beetles (Coleoptera, Carabidae) inferred from mitochondrial ND5 gene sequences. Mol Phylogenet Evol 2004, 30:152-166.
  • [52]Su ZH, Imura Y, Zhou HZ, Okamoto M, Osawa S: Mode of morphological differentiation in the Latitarsi-ground beetles (Coleoptera, Carabidae) of the world inferred from a phylogenetic tree of mitochondrial ND5 gene sequences. Genes Genet Syst 2003, 78:53-70.
  • [53]Ohta T: Slightly deleterious mutant substitutions in evolution. Nature 1973, 246:96-98.
  • [54]Ribera I, Hernando C, Aguilera P: Agabus alexandrae sp n. from Morocco, with a molecular phylogeny of the Western Mediterranean species of the A. guttatus group (Coleoptera: Dytiscidae). Insect Syst Evol 2001, 32:253-262.
  • [55]Barraclough TG, Vogler AP: Recent diversification rates in North American tiger beetles estimated from a dated mtDNA phylogenetic tree. Mol Biol Evol 2002, 19:1706-1716.
  • [56]Ribera I, Vogler AP: Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae). Mol Ecol 2004, 13:179-193.
  • [57]Gómez-Zurita J, Garneria I, Petitpierre E: Molecular phylogenetics and evolutionary analysis of body shape in the genus Cyrtonus (Coleoptera, Chrysomelidae). J Zool Syst Evol Res 2007, 45:317-328.
  • [58]Balke M, Gómez-Zurita J, Ribera I, Viloria A, Zillikens A, Steiner J, Garcia M, Hendrich L, Vogler AP: Ancient associations of aquatic beetles and tank bromeliads in the Neotropical forest canopy. Proc Nat Acad Sci USA 2008, 105:6356-6361.
  • [59]Gómez-Zurita J, Funk DJ, Vogler AP: The evolution of unisexuality in Calligrapha leaf beetles: Molecular and ecological insights on multiple origins via interspecific hybridization. Evolution 2006, 60:328-347.
  • [60]Hidalgo-Galiana A, Ribera I: Late Miocene diversification of the genus Hydrochus (Coleoptera, Hydrochidae) in the west Mediterranean area. Mol Phylogenet Evol 2011, 59:377-385.
  • [61]Faille A, Casale A, Ribera I: Phylogenetic relationships of Western Mediterranean subterranean Trechini groundbeetles (Coleoptera: Carabidae). Zool Scr 2011, 40:282-295.
  • [62]Brown JM, Lemmon AR: The importance of data partitioning and the utility of bayes factors in Bayesian phylogenetics. Syst Biol 2007, 56:643-655.
  • [63]Zheng Y, Peng R, Kuro-o M, Zeng X: Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: A case study of salamanders (Order Caudata). Mol Biol Evol 2011, 28:2521-2535.
  • [64]Marshall DC: Cryptic failure of partitioned Bayesian phylogenetic analyses: Lost in the land of long trees. Syst Biol 2010, 59:108-117.
  • [65]Golubchik T, Wise MJ, Easteal S, Jermiin LS: Mind the gaps: Evidence of bias in estimates of multiple sequence alignments. Mol Biol Evol 2007, 24:2433-2442.
  文献评价指标  
  下载次数:8次 浏览次数:7次