期刊论文详细信息
BMC Research Notes
Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR)
Jin-Hoi Kim1  Han Geuk Seo1  Chankyu Park1  Ssang-Goo Cho1  Sangiliyandi Gurunathan1  Min-Hee Kang1  Jae-Kyo Jeong1 
[1] Department of Animal Biotechnology, KonKuk University, Seoul 143-701, Republic of Korea
关键词: Gene expression;    Preimplantation embryos;    Mouse;    Reference gene;    RT-PCR;   
Others  :  1127420
DOI  :  10.1186/1756-0500-7-675
 received in 2014-03-09, accepted in 2014-09-05,  发布年份 2014
PDF
【 摘 要 】

Background

Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied.

Results

mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively.

Conclusions

These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions.

【 授权许可】

   
2014 Jeong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220144241630.pdf 810KB PDF download
Figure 3. 114KB Image download
Figure 2. 88KB Image download
Figure 1. 104KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Whittingham DG: Culture of mouse ova. J Reprod Fertil Suppl 1971, 14:7-21.
  • [2]Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I: An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 1989, 86:679-688.
  • [3]Lawitts JA, Biggers JD: Culture of preimplantation embryos. Methods Enzymol 1993, 225:153-164.
  • [4]Baltz JM: Media composition: salts and osmolality. Methods Mol Biol 2012, 912:61-80.
  • [5]Dawson KM, Collins JL, Baltz JM: Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol Reprod 1998, 59:225-232.
  • [6]Hadi T, Hammer MA, Algire C, Richards T, Baltz JM: Similar effects of osmolarity, glucose, and phosphate on cleavage past the 2-cell stage in mouse embryos from outbred and F1 hybrid females. Biol Reprod 2005, 72:179-187.
  • [7]Gardner DK, Lane M: Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod 1993, 48:377-385.
  • [8]Lane M, Gardner DK: Inhibiting 3-phosphoglycerate kinase by EDTA stimulates the development of the cleavage stage mouse embryo. Mol Reprod Dev 2001, 60:233-240.
  • [9]Biggers JD, Whittingham DG, Donahue RP: The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A 1967, 58:560-567.
  • [10]Kaufman MH, Sachs L: Complete preimplantation development in culture of parthenogenetic mouse embryos. J Embryol Exp Morphol 1976, 35:179-190.
  • [11]Quinn P, Harlow GM: The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool 1978, 206:73-80.
  • [12]Whitten WK, Biggers JD: Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil 1968, 17:399-401.
  • [13]Brambrink T, Wabnitz P, Halter R, Klocke R, Carnwath J, Kues W, Wrenzycki C, Paul D, Niemann H: Application of cDNA arrays to monitor mRNA profiles in single preimplantation mouse embryos. Biotechniques 2002, 33:376-378. 380, 382–5
  • [14]Bustin S: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25:169-193.
  • [15]Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M: An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 2006, 34:e42.
  • [16]Abe K, Ko MS, Macgregor GR: A systematic molecular genetic approach to study mammalian germline development. Int J Dev Biol 1998, 42:1051-1065.
  • [17]Collins J, Fleming T: Specific mRNA detection in single lineage-marked blastomeres from preimplantation embryos. Trends Genet 1995, 11:5-7.
  • [18]Park MR, Hwang KC, Bui HT, Cho SG, Park C, Song H, Oh JW, Kim JH: Altered gene expression profiles in mouse tetraploid blastocysts. J Reprod Dev 2012, 58:344-352.
  • [19]Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Wood WH III, Becker KG, Ko MS: Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci U S A 2000, 97:9127-9132.
  • [20]Campbell WJ, Miller KA, Anderson TM, Shull JD, Rizzino A: Expression of fibroblast growth factor receptors by embryonal carcinoma cells and early mouse embryos. In Vitro Cell Dev Biol 1992, 28A:61-66.
  • [21]Zou JW, Sun MX, Yang HY: Single-embryo RT-PCR assay to study gene expression dynamics during embryogenesis inArabidopsis thaliana. Plant Mol Biol Report 2002, 20:19-26.
  • [22]Goossens K, Van Soom A, Van Poucke M, Vandaele L, Vandesompele J, Van Zeveren A, Peelman LJ: Identification and expression analysis of genes associated with bovine blastocyst formation. BMC Dev Biol 2007, 7:64. BioMed Central Full Text
  • [23]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative QPCR data by geometric averaging of multiple internal controls. Genome Biol 2002, 3:34.
  • [24]Jeong YJ, Choi HW, Shin HS, Cui XS, Kim NH, Gerton GL, Jun JH: Optimization of real time RT-PCR methods for the analysis of gene expression in mouse eggs and preimplantation embryos. Mol Reprod Dev 2005, 71:284-289.
  • [25]Mamo S, Gal AB, Bodo S, Dinnyes A: Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol 2007, 7:14. BioMed Central Full Text
  • [26]Veazey KJ, Golding MC: Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells. PLoS One 2011, 6:e27592.
  • [27]Llobat L, Marco-Jimenez F, Penaranda DS, Saenz-De-Juano MD, Vicente JS: effect of embryonic genotype on reference gene selection for RT-qPCR normalization. Reprod Domest Anim 2012, 47:629-634.
  • [28]Filliers M, Goossens K, Van Soom A, Merlo B, Pope CE, De Rooster H, Smits K, Vandaele L, Peelman LJ: Gene expression profiling of pluripotency and differentiation-related markers in cat oocytes and preimplantation embryos. Reprod Fertil Dev 2012, 24:691-703.
  • [29]Kuijk EW, Du Puy L, Van Tol HT, Haagsman HP, Colenbrander B, Roelen BA: Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos. BMC Dev Biol 2007, 7:58. BioMed Central Full Text
  • [30]Bower NI, Moser RJ, Hill JR, Lehnert SA: Universal reference method for real-time PCR gene expression analysis of preimplantation embryos. Biotechniques 2007, 42:199-206.
  • [31]Mamo S, Carter F, Lonergan P, Leal CL, Al Naib A, Mcgettigan P, Mehta JP, Evans AC, Fair T: Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation. BMC Genomics 2011, 12:151. BioMed Central Full Text
  • [32]Vallee M, Dufort I, Desrosiers S, Labbe A, Gravel C, Gilbert I, Robert C, Sirard MA: Revealing the bovine embryo transcript profiles during early in vivo embryonic development. Reproduction 2009, 138:95-105.
  • [33]Paris DB, Kuijk EW, Roelen BA, Stout TA: Establishing reference genes for use in real-time quantitative PCR analysis of early equine embryos. Reprod Fertil Dev 2011, 23:353-363.
  • [34]Braude P, Bolton V, Moore S: Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 1988, 332:459-461.
  • [35]Huang X, Hao C, Shen X, Liu X, Shan Y, Zhang Y, Chen L: Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome. Reproduction 2013, 145:597-608.
  • [36]Hamatani T, Carter MG, Sharov AA, Ko MSH: Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004, 6:117-131.
  • [37]Santos F, Hendrich B, Reik W, Dean W: Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 2002, 241:172-182.
  • [38]Bui H-T, Wakayama S, Mizutani E, Park K-K, Kim J-H, Van Thuan N, Wakayama T: Essential role of paternal chromatin in the regulation of transcriptional activity during mouse preimplantation development. Reproduction 2011, 141:67-77.
  • [39]Gardner DK, Lane M, Calderon I, Leeton J: Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 1996, 65:349-353.
  • [40]Lazzari G, Colleoni S, Duchi R, Galli A, Houghton FD, Galli C: Embryonic genotype and inbreeding affect preimplantation development in cattle. Reproduction 2011, 141:625-632.
  • [41]Marikawa Y, Alarcón VB: Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol Reprod Dev 2009, 76:1019-1032.
  • [42]Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, Chen JY, Lu WJ, Li JG: Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 2011, 30:641-653.
  • [43]Dheda K, Huggett J, Bustin S, Johnson M, Rook G, Zumla A: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 2004, 37:112-114.
  • [44]Eisen J: Zebrafish make a big splash. Cell 1996, 87:969-977.
  • [45]Tang R, Dodd A, Lai D, Mcnabb W, Love D: Validation of Zebrafish (Danio rerio) reference genes for quantitative real-time qpcr normalization. Acta Biochim Biophys Sin 2007, 39:384-390.
  • [46]Huggett J, Dheda K, Bustin S, Zumla A: Real-time QPCR normalisation; strategies and considerations. Genes Immun 2005, 6:279-284.
  • [47]Fernandez P, DI Rienzo JA, Moschen S, Dosio GA, Aguirrezabal LA, Hopp HE, Paniego N, Heinz RA: Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Rep 2011, 30:63-74.
  • [48]Selim M, Legay S, Berkelmann-Lohnertz B, Langen G, Kogel KH, Evers D: Identification of suitable reference genes for real-time RT-PCR normalization in the grapevine-downy mildew pathosystem. Plant Cell Rep 2012, 31:205-216.
  • [49]Bustin S: Quantification of mRNA using real-time reverse transcription (PCR QPCR): trends and problems. J Mol Endocrinol 2002, 29:23-39.
  • [50]Leidenfrost S, Boelhauve M, Reichenbach M, Güngör T, Reichenbach H-D, Sinowatz F, Wolf E, Habermann FA: Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One 2011, 6:e22121.
  • [51]Lequarre AS, Grisart B, Moreau B, Schuurbiers N, Massip A, Dessy F: Glucose metabolism during bovine preimplantation development: analysis of gene expression in single oocytes and embryos. Mol Reprod Dev 1997, 48:216-226.
  • [52]Park M-R, Gurunathan S, Choi Y-J, Kwon D-N, Han J-W, Cho S-G, Park C, Seo HG, Kim J-H: Chitosan nanoparticles cause pre- and postimplantation embryo complications in mice. Biol Reprod 2013, 88(88):1-13.
  • [53]Erkman L, Yates PA, Mclaughlin T, Mcevilly RJ, Whisenhunt T, O’connell SM, Krones AI, Kirby MA, Rapaport DH, Bermingham JR, O'Leary DD, Rosenfeld MG: A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 2000, 28:779-792.
  • [54]Lloyd C, Gunning P: beta- and gamma-actin genes differ in their mechanisms of down-regulation during myogenesis. J Cell Biochem 2002, 84:335-342.
  • [55]Oishi M, Gohma H, Hashizume K, Taniguchi Y, Yasue H, Takahashi S, Yamada T, Sasaki Y: Early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear-derived cloned embryo. Mol Reprod Dev 2006, 73:404-409.
  • [56]Garcia-Herreros M, Aparicio IM, Rath D, Fair T, Lonergan P: Differential glycolytic and glycogenogenic transduction pathways in male and female bovine embryos produced in vitro. Reprod Fertil Dev 2012, 24:344-352.
  • [57]Mack HI, Zheng B, Asara JM, Thomas SM: AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012, 8:1197-1214.
  • [58]Finley LW, Haas W, Desquiret-Dumas V, Wallace DC, Procaccio V, Gygi SP, Haigis MC: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 2011, 6:e23295.
  • [59]Iwamoto D, Kasamatsu A, Ideta A, Urakawa M, Matsumoto K, Hosoi Y, Iritani A, Aoyagi Y, Saeki K: Donor cells at the G1 phase enhance homogeneous gene expression among blastomeres in bovine somatic cell nuclear transfer embryos. Cell Reprogram 2012, 14:20-28.
  • [60]Kuchipudi SV, Tellabati M, Nelli RK, White GA, Perez BB, Sebastian S, Slomka MJ, Brookes SM, Brown IH, Dunham SP, Chang KC: 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol J 2012, 9:230. BioMed Central Full Text
  • [61]Fried G, Wramsby H: Increase in transforming growth factor beta1 in ovarian follicular fluid following ovarian stimulation and in-vitro fertilization correlates to pregnancy. Hum Reprod 1998, 13:656-659.
  • [62]Samuel MS, Lundgren-May T, Ernst M: Identification of putative targets of DNA (cytosine-5) methylation-mediated transcriptional silencing using a novel conditionally active form of DNA methyltransferase 3a. Growth Factors 2007, 25:426-436.
  • [63]Castro CB, Whittock LD, Whittock SP, Leggett G, Koutoulis A: DNA sequence and expression variation of hop (Humulus lupulus) valerophenone synthase (VPS), a key gene in bitter acid biosynthesis. Ann Bot 2008, 102:265-273.
  • [64]Matousek J, Kocabek T, Patzak J, Skopek J, Maloukh L, Heyerick A, Fussy Z, Roldan-Ruiz I, Keukeleire DD: HlMyb3, a putative regulatory factor in hop (Humulus lupulus L.), shows diverse biological effects in heterologous transgenotes. J Agric Food Chem 2007, 55:7767-7776.
  • [65]Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE: EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 2008, 20:186-200.
  • [66]Chang Z, Ling C, Yamashita M, Welham NV: Microarray-driven validation of reference genes for quantitative real-time polymerase chain reaction in a rat vocal fold model of mucosal injury. Anal Biochem 2010, 406:214-221.
  • [67]Nicot N, Hausman JF, Hoffmann L, Evers D: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 2005, 56:2907-2914.
  • [68]Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A: Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 2004, 313:856-862.
  • [69]Sturzenbaum SR, Kille P: Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B Biochem Mol Biol 2001, 130:281-289.
  文献评价指标  
  下载次数:18次 浏览次数:9次