期刊论文详细信息
BMC Microbiology
Functional characterization of probiotic surface layer protein-carrying Lactobacillus amylovorus strains
Airi Palva1  Silja Åvall-Jääskeläinen1  Ksenija Uroić2  Hauke Smidt3  Jasna Beganović2  Taija E Pietilä1  Tanja Lähteinen1  Ravi Kant1  Ulla Hynönen1 
[1] Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland;Faculty of Food Technology and Biotechnology, Laboratory of Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, University of Zagreb, Pierottijeva 6, Zagreb 10000, Croatia;Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen NL-6703 HB, The Netherlands
关键词: Dendritic cell;    IPEC-1;    Adhesion;    Lactobacillus;    S-layer;   
Others  :  1140647
DOI  :  10.1186/1471-2180-14-199
 received in 2014-02-19, accepted in 2014-07-12,  发布年份 2014
PDF
【 摘 要 】

Background

Adhesiveness to intestinal epithelium, beneficial immunomodulating effects and the production of pathogen-inhibitory compounds are generally considered as beneficial characteristics of probiotic organisms. We showed the potential health-promoting properties and the mechanisms of probiotic action of seven swine intestinal Lactobacillus amylovorus isolates plus the type strain (DSM 20531T) by investigating their adherence to porcine intestinal epithelial cells (IPEC-1) and mucus as well as the capacities of the strains to i) inhibit the adherence of Escherichia coli to IPEC-1 cells, ii) to produce soluble inhibitors against intestinal pathogens and iii) to induce immune signaling in dendritic cells (DCs). Moreover, the role of the L. amylovorus surface (S) –layers - symmetric, porous arrays of identical protein subunits present as the outermost layer of the cell envelope - in adherence to IPEC-1 cells was assessed using a novel approach which utilized purified cell wall fragments of the strains as carriers for the recombinantly produced S-layer proteins.

Results

Three of the L. amylovorus strains studied adhered to IPEC-1 cells, while four strains inhibited the adherence of E. coli, indicating additional mechanisms other than competition for binding sites being involved in the inhibition. None of the strains bound to porcine mucus. The culture supernatants of all of the strains exerted inhibitory effects on the growth of E. coli, Salmonella, Listeria and Yersinia, and a variable, strain-dependent induction was observed of both pro- and anti-inflammatory cytokines in human DCs. L. amylovorus DSM 16698 was shown to carry two S-layer-like proteins on its surface in addition to the major S-layer protein SlpA. In contrast to expectations, none of the major S-layer proteins of the IPEC-1 -adhering strains mediated bacterial adherence.

Conclusions

We demonstrated adhesive and significant pathogen inhibitory efficacies among the swine intestinal L. amylovorus strains studied, pointing to their potential use as probiotic feed supplements, but no independent role could be demonstrated for the major S-layer proteins in adherence to epithelial cells. The results indicate that many intestinal bacteria may coexist with and confer benefits to the host by mechanisms not attributable to adhesion to epithelial cells or mucus.

【 授权许可】

   
2014 Hynönen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325074523724.pdf 1690KB PDF download
Figure 8. 120KB Image download
Figure 7. 32KB Image download
Figure 6. 64KB Image download
Figure 5. 94KB Image download
Figure 4. 35KB Image download
Figure 3. 96KB Image download
Figure 2. 77KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Lalles JP, Bosi P, Smidt H, Stokes CR: Nutritional management of gut health in pigs around weaning. Proc Nutr Soc 2007, 66:260-268.
  • [2]Jin LZ, Zhao X: Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine–a review. Appl Microbiol Biotechnol 2000, 54:311-318.
  • [3]Shepard SM, Danzeisen JL, Isaacson RE, Seemann T, Achtman M, Johnson TJ: Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol 2012, 194:395-405.
  • [4]Abe F, Ishibashi N, Shimamura S: Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Dairy Sci 1995, 78:2838-2846.
  • [5]Giang HH, Viet TQ, Ogle B, Lindberg JE: Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livest Sci 2010, 129:95-103.
  • [6]Zhang L, Xu YQ, Liu HY, Lai T, Ma JL, Wang JF, Zhu YH: Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol 2010, 141:142-148.
  • [7]Gebert S, Davis E, Rehberger T, Maxwell CV: Lactobacillus brevis strain 1E1 administered to piglets through milk supplementation prior to weaning maintains intestinal integrity after the weaning event. Benef Microbes 2011, 2:35-45.
  • [8]Hynönen U, Palva A: Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013, 97:5225-5243.
  • [9]Toba T, Virkola R, Westerlund B, Björkman Y, Sillanpää J, Vartio T, Kalkkinen N, Korhonen TK: A Collagen-Binding S-Layer Protein in Lactobacillus crispatus. Appl Environ Microbiol 1995, 61:2467-2471.
  • [10]Hynönen U, Westerlund-Wikström B, Palva A, Korhonen TK: Identification by flagellum display of an epithelial cell- and fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis. J Bacteriol 2002, 184:3360-3367.
  • [11]Buck BL, Altermann E, Svingerud T, Klaenhammer TR: Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2005, 71:8344-8351.
  • [12]Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y: S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 2008, 105:19474-19479.
  • [13]Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W: Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol 2013, 97:1941-1952.
  • [14]Doig P, Emödy L, Trust TJ: Binding of laminin and fibronectin by the trypsin-resistant major structural domain of the crystalline virulence surface array protein of Aeromonas salmonicida. J Biol Chem 1992, 267:43-49.
  • [15]Noonan B, Trust TJ: The synthesis, secretion and role in virulence of the paracrystalline surface protein layers of Aeromonas salmonicida and A. hydrophila. FEMS Microbiol Lett 1997, 154:1-7.
  • [16]Calabi E, Calabi F, Phillips AD, Fairweather NF: Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun 2002, 70:5770-5778.
  • [17]Sakakibara J, Nagano K, Murakami Y, Higuchi N, Nakamura H, Shimozato K, Yoshimura F: Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiol 2007, 153:866-876.
  • [18]Poppinga L, Janesch B, Funfhaus A, Sekot G, Garcia-Gonzalez E, Hertlein G, Hedtke K, Schaffer C, Genersch E: Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. PLoS Pathog 2012, 8:e1002716.
  • [19]Merrigan MM, Venugopal A, Roxas JL, Anwar F, Mallozzi MJ, Roxas BA, Gerding DN, Viswanathan VK, Vedantam G: Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS One 2013, 8:e78404.
  • [20]Naito S, Hayashidani H, Kaneko K, Ogawa M, Benno Y: Development of intestinal lactobacilli in normal piglets. J Appl Bacteriol 1995, 79:230-236.
  • [21]Mulder IE, Schmidt B, Stokes CR, Lewis M, Bailey M, Aminov RI, Prosser JI, Gill BP, Pluske JR, Mayer CD, Musk CC, Kelly D: Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol 2009, 7:79. 7007-7-79
  • [22]Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans AD, Smidt H, de Vos WM: Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 2006, 8:1191-1199.
  • [23]Marti R, Dabert P, Ziebal C, Pourcher AM: Evaluation of Lactobacillus sobrius/L. amylovorus as a new microbial marker of pig manure. Appl Environ Microbiol 2010, 76:1456-1461.
  • [24]Konstantinov SR, Poznanski E, Fuentes S, Akkermans AD, Smidt H, de Vos WM: Lactobacillus sobrius sp. nov., abundant in the intestine of weaning piglets. Int J Syst Evol Microbiol 2006, 56:29-32.
  • [25]Jakava-Viljanen M, Murros A, Palva A, Björkroth KJ: Lactobacillus sobrius Konstantinov et al. 2006 is a later synonym of Lactobacillus amylovorus Nakamura 1981. Int J Syst Evol Microbiol 2008, 58:910-913.
  • [26]Roselli M, Finamore A, Britti MS, Konstantinov SR, Smidt H, de Vos WM, Mengheri E: The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr 2007, 137:2709-2716.
  • [27]Konstantinov SR, Smidt H, Akkermans AD, Casini L, Trevisi P, Mazzoni M, De Filippi S, Bosi P, de Vos WM: Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol Ecol 2008, 66:599-607.
  • [28]Jakava-Viljanen M, Palva A: Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues. Vet Microbiol 2007, 124:264-273.
  • [29]Lähteinen T, Malinen E, Koort JM, Mertaniemi-Hannus U, Hankimo T, Karikoski N, Pakkanen S, Laine H, Sillanpää H, Söderholm H, Palva A: Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe 2010, 16:293-300.
  • [30]Studier FW: Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 1991, 219:37-44.
  • [31]Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW: Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 1989, 17:3469-3478.
  • [32]Gonzalez-Vallina R, Wang H, Zhan R, Berschneider HM, Lee RM, Davidson NO, Black DD: Lipoprotein and apolipoprotein secretion by a newborn piglet intestinal cell line (IPEC-1). Am J Physiol 1996, 271:G249-G259.
  • [33]Åvall-Jääskeläinen S, Hynönen U, Ilk N, Pum D, Sleytr UB, Palva A: Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287. BMC Microbiol 2008, 8:165.
  • [34]MacAdam AB, Shafi ZB, Marriott C, Martin GP, James SL: Anti-mucus polyclonal antibody production, purification and linkage to the surface of albumin microspheres. Int J Pharm 2000, 195:147-158.
  • [35]Collado MC, Gueimonde M, Hernandez M, Sanz Y, Salminen S: Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 2005, 68:2672-2678.
  • [36]Skyttä E, Mattila-Sandholm T: A quantitative method for assessing bacteriocins and other food antimicrobials by automated turbidometry. J Microbiol Methods 1991, 14:77-88.
  • [37]Veckman V, Miettinen M, Pirhonen J, Siren J, Matikainen S, Julkunen I: Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells. J Leukoc Biol 2004, 75:764-771.
  • [38]Koh SY, George S, Brozel V, Moxley R, Francis D, Kaushik RS: Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli. Vet Microbiol 2008, 130:191-197.
  • [39]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [40]Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007, 56:564-577.
  • [41]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [42]Vilen H, Hynönen U, Badelt-Lichtblau H, Ilk N, Jääskeläinen P, Torkkeli M, Palva A: Surface location of individual residues of SlpA provides insight into the Lactobacillus brevis S-layer. J Bacteriol 2009, 191:3339-3349.
  • [43]Pum D, Toca-Herrera JL, Sleytr UB: S-layer protein self-assembly. Int J Mol Sci 2013, 14:2484-2501.
  • [44]Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ: The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 1998, 167:185-189.
  • [45]Ouwehand AC, Kirjavainen PV, Grönlund M, Isolauri E, Salminen SJ: Adhesion of probiotic micro-organisms to intestinal mucus. Int Dairy J 1999, 9:623-630.
  • [46]Laparra JM, Sanz Y: Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 2009, 49:695-701.
  • [47]Van Tassell ML, Miller MJ: Lactobacillus adhesion to mucus. Nutrients 2011, 3:613-636.
  • [48]Jonsson H, Ström E, Roos S: Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro. FEMS Microbiol Lett 2001, 204:19-22.
  • [49]Li XJ, Yue LY, Guan XF, Qiao SY: The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol 2008, 104:1082-1091.
  • [50]Martin R, Delgado S, Maldonado A, Jimenez E, Olivares M, Fernandez L, Sobrino OJ, Rodriguez JM: Isolation of lactobacilli from sow milk and evaluation of their probiotic potential. J Dairy Res 2009, 76:418-425.
  • [51]Rojas M, Conway PL: A dot-blot assay for adhesive components relative to probiotics. In Methods in Enzymology. Volume 336. Edited by Doyle R. Waltham: Academic Press; 2001::389-402. [1st editon]
  • [52]Tuomola EM, Ouwehand AC, Salminen SJ: Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int J Food Microbiol 2000, 60:75-81.
  • [53]Lebeer S, Vanderleyden J, De Keersmaecker SC: Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2008, 72:728-764.
  • [54]Jirillo E, Jirillo F, Magrone T: Healthy effects exerted by prebiotics, probiotics, and symbiotics with special reference to their impact on the immune system. Int J Vitam Nutr Res 2012, 82:200-208.
  • [55]Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, Zaat BA, Yazdanbakhsh M, Wierenga EA, van Kooyk Y, Kapsenberg ML: Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 2005, 115:1260-1267.
  • [56]Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin GL, Warfield KL, Bavari S, Klaenhammer TR: Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 2005, 102:2880-2885.
  • [57]Christensen HR, Frokiaer H, Pestka JJ: Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 2002, 168:171-178.
  • [58]Hart AL, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, Campieri M, Kamm MA, Knight SC, Stagg AJ: Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 2004, 53:1602-1609.
  • [59]Meijerink M, van Hemert S, Taverne N, Wels M, de Vos P, Bron PA, Savelkoul HF, van Bilsen J, Kleerebezem M, Wells JM: Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One 2010, 5:e10632.
  • [60]Van Overtvelt L, Moussu H, Horiot S, Samson S, Lombardi V, Mascarell L, van de Moer A, Bourdet-Sicard R, Moingeon P: Lactic acid bacteria as adjuvants for sublingual allergy vaccines. Vaccine 2010, 28:2986-2992.
  • [61]D’Arienzo R, Bozzella G, Rossi M, De Bellis P, Lavermicocca P, Sisto A: Distinct immunomodulatory properties of Lactobacillus paracasei strains. J Appl Microbiol 2011, 111:1482-1491.
  • [62]Hsieh PS, An Y, Tsai YC, Chen YC, Chuang CJ, Zeng CT, Wang CT, An-Erl King V: Potential of probiotic strains to modulate the inflammatory responses of epithelial and immune cells in vitro. New Microbiol 2013, 36:167-179.
  • [63]Luongo D, Miyamoto J, Bergamo P, Nazzaro F, Baruzzi F, Sashihara T, Tanabe S, Rossi M: Differential modulation of innate immunity in vitro by probiotic strains of Lactobacillus gasseri. BMC Microbiol 2013, 13:298. 2180-13-298
  • [64]Weiss G, Rasmussen S, Nielsen Fink L, Jarmer H, Nohr Nielsen B, Frokiaer H: Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells. PLoS One 2010, 5:e11065.
  • [65]Gad M, Ravn P, Soborg DA, Lund-Jensen K, Ouwehand AC, Jensen SS: Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria. FEMS Immunol Med Microbiol 2011, 63:93-107.
  • [66]Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O’Flaherty S, Barrett T, Klaenhammer TR: Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4623-4630.
  • [67]Johnson B, Selle K, O’Flaherty S, Goh YJ, Klaenhammer T: Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology 2013, 159:2269-2282.
  • [68]Felis GE, Dellaglio F: Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 2007, 8:44-61.
  • [69]Bailey M: The mucosal immune system: Recent developments and future directions in the pig. Dev Comp Immunol 2009, 33:375-383.
  • [70]Antikainen J, Anton L, Sillanpää J, Korhonen TK: Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 2002, 2:381-394.
  • [71]Smit E, Oling F, Demel R, Martinez B, Pouwels PH: The S-layer protein of Lactobacillus acidophilus ATCC 4356: identification and characterization of domains responsible for S-protein assembly and cell wall binding. J Mol Biol 2001, 305:245-257.
  • [72]Boot HJ, Kolen CP, Pouwels PH: Interchange of the active and silent S-layer protein genes of Lactobacillus acidophilus by inversion of the chromosomal slp segment. Mol Microbiol 1996, 21:799-809.
  • [73]Martinez B, Sillanpää J, Smit E, Korhonen TK, Pouwels PH: Expression of cbsA encoding the collagen-binding S-protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393(T). J Bacteriol 2000, 182:6857-6861.
  • [74]Zadeh M, Khan MW, Goh YJ, Selle K, Owen JL, Klaenhammer T, Mohamadzadeh M: Induction of intestinal pro-inflammatory immune responses by lipoteichoic acid. J Inflamm (Lond) 2012, 9:7. 9255-9-7
  • [75]Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrene Y, Vanderleyden J, De Keersmaecker SC: Identification of a gene cluster for the biosynthesis of a long galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol 2009, 75:3354-3563.
  • [76]Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, De Keersmaecker SC, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, de Vos WM: Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci U S A 2009, 106:17193-17198.
  文献评价指标  
  下载次数:86次 浏览次数:19次