期刊论文详细信息
BMC Microbiology
Human milk metagenome: a functional capacity analysis
Illimar Altosaar1  Ilya Ioshikhes1  Sergey Hosid1  Tonya L Ward2 
[1]Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
[2]Department of Biochemistry, Microbiology and Immunology
[3] and Ottawa Institute of Computational Biology and Bioinformatics, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
关键词: Infant feces;    Immune-modulatory motifs;    Open reading frames;    DNA;    Illumina;    Bacteria;    Metagenome;    Microbiome;    Human milk;   
Others  :  1143689
DOI  :  10.1186/1471-2180-13-116
 received in 2013-02-21, accepted in 2013-05-10,  发布年份 2013
PDF
【 摘 要 】

Background

Human milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants’ feces (n = 5, each) and mothers’ feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk.

Results

The bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants’ and mothers’ feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P < 0.05). The human milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants’ and mothers’ fecal metagenomes.

Conclusions

Our results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the functionality of the human milk metagenome are warranted.

【 授权许可】

   
2013 Ward et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329191113979.pdf 2052KB PDF download
Figure 6. 71KB Image download
Figure 5. 62KB Image download
Figure 4. 34KB Image download
Figure 3. 48KB Image download
Figure 2. 117KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kramer MS, Guo T, Platt RW, Sevkovskaya Z, Dzikovich I, Collet JP, Shapiro S, Chalmers B, Hodnett E, Vanilovich I, Mezen I, Ducruet T, Shishko G, Bogdanovich N: Infant growth and health outcomes associated with 3 compared with 6 mo of exclusive breastfeeding. Am J Clin Nutr 2003, 78:291-295.
  • [2]Ladomenou F, Moschandreas J, Kafatos A, Tselentis Y, Galanakis E: Protective effect of exclusive breastfeeding against infections during infancy: a prospective study. Arch Dis Child 2010, 95:1004-1008.
  • [3]Meinzen-Derr J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF: Role of human milk in extremely low birth weight infants' risk of necrotizing enterocolitis or death. J Perinatol 2009, 29:57-62.
  • [4]Sangild PT, Siggers RH, Schmidt M, Elnif J, Bjornvad CR, Thymann T, Grondahl ML, Hansen AK, Jensen SK, Boye M, Moelbak L, Buddington RK, Westrom BR, Holst JJ, Burrin DG: Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterol 2006, 130:1776-1792.
  • [5]Sodhi C, Richardson W, Gribar S, Hackam DJ: The development of animal models for the study of necrotizing enterocolitis. Dis Model Mech 2008, 1:94-98.
  • [6]Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW: Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000, 30:61-67.
  • [7]Sakata S, Tonooka T, Ishizeki S, Takada M, Sakamoto M, Fukuyama M, Benno Y: Culture-independent analysis of fecal microbiota in infants, with special reference to Bifidobacterium species. FEMS Microbiol Lett 2005, 243:417-423.
  • [8]Clemente JC, Ursell LK, Parfrey LW, Knight R: The impact of the gut microbiota on human health: an integrative view. Cell 2012, 148:1258-1270.
  • [9]Dalpke A, Frank J, Peter M, Heeg K: Activation of toll-like receptor 9 by DNA from different bacterial species. Infect Immun 2006, 74:940-946.
  • [10]Gursel I, Gursel M, Yamada H, Ishii KJ, Takeshita F, Klinman DM: Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J Immunol 2003, 171:1393-1400.
  • [11]Bouladoux N, Hall JA, Grainger JR, dos Santos LM, Kann MG, Nagarajan V, Verthelyi D, Belkaid Y: Regulatory role of suppressive motifs from commensal DNA. Mucosal Immunol 2012, 5:623-634.
  • [12]Lin PW, Nasr TR, Stoll BJ: Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol 2008, 32:70-82.
  • [13]Heikkila MP, Saris PEJ: Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003, 95:471-478.
  • [14]Martin R, Heilig HG, Zoetendal EG, Jimenez E, Fernandez L, Smidt H, Rodriguez JM: Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 2007, 158:31-37.
  • [15]Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, Rodriguez JM: Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009, 75:965-969.
  • [16]Collado MC, Delgado S, Maldonado A, Rodriguez J: Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol 2009, 48:523-528.
  • [17]Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA: Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 2011, 6:e21313.
  • [18]Martin V, Manes-Lazaro R, Rodriguez JM, Maldonado-Barragan A: Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int J Syst Evol Microbiol 2011, 61:1048-1052.
  • [19]Martin V, Maldonado-Barragan A, Moles L, Rodriguez-Banos M, Campo RD, Fernandez L, Rodriguez JM, Jimenez E: Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 2012, 28:36-44.
  • [20]Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A: The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 2012, 96:544-551.
  • [21]Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008, 9:386.
  • [22]Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 2010, 17:1519-1533.
  • [23]Hartmann G, Krieg AM: Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000, 164:944-953.
  • [24]Stunz LL, Lenert P, Peckham D, Yi AK, Haxhinasto S, Chang M, Krieg AM, Ashman RF: Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. Eur J Immunol 2002, 32:1212-1222.
  • [25]Peter M, Bode K, Lipford GB, Eberle F, Heeg K, Dalpke AH: Characterization of suppressive oligodeoxynucleotides that inhibit Toll-like receptor-9-mediated activation of innate immunity. Immunology 2008, 123:118-128.
  • [26]Ashman RF, Goeken JA, Latz E, Lenert P: Optimal oligonucleotide sequences for TLR9 inhibitory activity in human cells: lack of correlation with TLR9 binding. Int Immunol 2011, 23:203-214.
  • [27]Zhang X, Gao M, Ha T, Kalbfleisch JH, Williams DL, Li C, Kao RL: The toll-like receptor 9 agonist, CpG-oligodeoxynucleotide 1826, ameliorates cardiac dysfunction after trauma-hemorrhage. Shock 2012, 38:146-152.
  • [28]Huttenhower C, Gevers D, Knight R, Abubucker A, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, Giglio MG, Hallworth-Pepin K: Structure, function and diversity of the healthy human microbiome. Nature 2012, 486:207-214.
  • [29]Collado MC, Laitinen K, Salminen S, Isolauri E: Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res 2012, 72:77-85.
  • [30]de Boer R, Peters R, Gierveld S, Schuurman T, Kooistra-Smid M, Savelkoul P: Improved detection of microbial DNA after bead-beating before DNA isolation. J Microbiol Methods 2010, 80:209-211.
  • [31]Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI: Human gut microbiome viewed across age and geography. Nature 2012, 486:222-227.
  • [32]Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA: Topographical and temporal diversity of the human skin microbiome. Science 2009, 324:1190-1192.
  • [33]Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R: Bacterial community variation in human body habitats across space and time. Science 2009, 326:1694-1697.
  • [34]Oh J, Conlan S, Polley EC, Segre JA, Kong HH: Shifts in human skin and nares microbiota of healthy children and adults. Genome Med 2012, 4:77.
  • [35]Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010, 107:11971-11975.
  • [36]Wharton BA, Balmer SE, Scott PH: Sorrento studies of diet and fecal flora in the newborn. Acta Paediatr Jpn 1994, 36:579-584.
  • [37]Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ, Donnet-Hughes A: Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 2007, 119:e724-732.
  • [38]Donnet-Hughes A, Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ: Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 2010, 69:407-415.
  • [39]Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P: Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 2001, 204:572-581.
  • [40]Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H: Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr 2000, 71:1589-1596.
  • [41]Zivkovic AM, German JB, Lebrilla CB, Mills DA: Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4653-4658.
  • [42]Hunt KM, Preuss J, Nissan C, Davlin CA, Williams JE, Shafii B, Richardson AD, McGuire MK, Bode L, McGuire MA: Human milk oligosaccharides promote the growth of Staphylococci. Appl Environ Microbiol 2012, 78:4763-4770.
  • [43]Corvaglia L, Battistini B, Paoletti V, Aceti A, Capretti MG, Faldella G: Near-infrared reflectance analysis to evaluate the nitrogen and fat content of human milk in neonatal intensive care units. Arch Dis Child Fetal Neonatal Ed 2008, 93:F372-375.
  • [44]Blais DR, Harrold J, Altosaar I: Killing the messenger in the nick of time: persistence of breast milk sCD14 in the neonatal gastrointestinal tract. Pediatr Res 2006, 59:371-376.
  • [45]Lepage P, Van de Perre P: The immune system of breast milk: antimicrobial and anti-inflammatory properties. Adv Exp Med Biol 2012, 743:121-137.
  • [46]Spencer WJ, Binette A, Ward TL, Davis L, Blais DR, Harrold J, Mack DR, Altosaar I: Alpha-lactalbumin in human milk alters the proteolytic degradation of soluble CD14 by forming a complex. Pediatr Res 2010, 68:490-493.
  • [47]Urbaniak C, Burton JP, Reid G: Breast, milk and microbes: a complex relationship that does not end with lactation. Womens Health (Lond Engl) 2012, 8:385-398.
  • [48]Delgado S, Garcia P, Fernandez L, Jimenez E, Rodriguez-Banos M, del Campo R, Rodriguez JM: Characterization of Staphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol Med Microbiol 2011, 62:225-235.
  • [49]Espinosa-Martos I, Montilla A, Segura AG, Escuder D, Bustos G, Pallas C, Rodriguez JM, Corzo N, Fernandez L: Bacteriological, biochemical and immunological modifications in human colostrum after Holder pasteurisation. J Pediatr Gastroenterol Nutr 2013, 56(5):560-568.
  • [50]Goldman AS: The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J 1993, 12:664-671.
  • [51]Jin YY, Wei Z, Cao RM, Xi W, Wu SM, Chen TX: Characterization of immunocompetent cells in human milk of Han Chinese. J Hum Lact 2011, 27:155-162.
  • [52]Jeurink PV, van Bergenhenegouwen J, Jimenez E, Knippels LM, Fernandez L, Garssen J, Knol J, Rodriguez JM, Martin R: Human milk: a source of more life than we imagine. Benef Microbes 2013, 4:17-30.
  • [53]Wilson K: Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001, 00:2.4.1-2.4.5.
  文献评价指标  
  下载次数:65次 浏览次数:32次