期刊论文详细信息
BMC Genomics
The phenotypic predisposition of the parent in F1 hybrid is correlated with transcriptome preference of the positive general combining ability parent
Daichang Yang1  Yingguo Zhu1  Wei Wang1  Daiming Jiang1  Xuefeng Qu1  Zhenwei Liu1  Zhibin Guo1  Gaoyuan Song1 
[1] State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan 430072, Hubei Province, China
关键词: Diallelic crosses;    Transcriptome and phenotype bias;    Hybrid rice;    Transcriptome profiling;    General combining ability (GCA);   
Others  :  1217448
DOI  :  10.1186/1471-2164-15-297
 received in 2014-01-20, accepted in 2014-04-10,  发布年份 2014
PDF
【 摘 要 】

Background

Sprague and Tatum (1942) introduced the concepts of general combining ability (GCA) and specific combining ability (SCA) to evaluate the breeding parents and F1 hybrid performance, respectively. Since then, the GCA was widely used in cross breeding for elite parent selection. However, the molecular basis of GCA remains to unknown.

Results

We studied the transcriptomes of three varieties and three F1 hybrids using RNA-Sequencing. Transcriptome sequence analysis revealed that the transcriptome profiles of the F1s were similar to the positive GCA-effect parent. Moreover, the expression levels of most differentially expressed genes (DEGs) were equal to the parent with a positive GCA effect. Analysis of the gene expression patterns of gibberellic acid (GA) and flowering time pathways that determine plant height and flowering time in rice validated the preferential transcriptome expression of the parents with positive GCA effect. Furthermore, H3K36me3 modification bias in the Pseudo-Response Regulators (PRR) gene family was observed in the positive GCA effect parents and demonstrated that the phenotype and transcriptome bias in the positive GCA effect parents have been epigenetically regulated by either global modification or specific signaling pathways in rice.

Conclusions

The results revealed that the transcriptome profiles and DEGs in the F1s were highly related to phenotype bias to the positive GCA-effect parent. The transcriptome bias toward high GCA parents in F1 hybrids attributed to H3K36me3 modification both on global modification level and specific signaling pathways. Our results indicated the transcriptome profile and epigenetic modification level bias to high GCA parents could be the molecular basis of GCA.

【 授权许可】

   
2014 Song et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706171157239.pdf 1225KB PDF download
Figure 5. 47KB Image download
Figure 4. 87KB Image download
Figure 3. 61KB Image download
Figure 2. 96KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Sprague GF, Tatum LA: General Vs specific combining ability in single crosses of Corn. J Ame Soc Agron 1942, 34(10):923-932.
  • [2]Viana JM, Delima RO, Mundim GB, Conde AB, Vilarinho AA: Relative efficiency of the genotypic value and combining ability effects on reciprocal recurrent selection. Theor Appl Genet 2012, 126(4):889-899.
  • [3]Moterle LM, Braccini AL, Scapim CA, Pinto RJ, Goncalves LS, do Amaral Junior AT, Silva TR: Combining ability of tropical maize lines for seed quality and agronomic traits. Genet Mol Res 2011, 10(3):2268-2278.
  • [4]Ahangar L, Ranjbar GA, Nouroozi M: Estimation of combining ability for yield and yield components in rice (Oryza sativa L.) cultivars using diallel cross. Pak J Biol Sci 2008, 11(9):1278-1281.
  • [5]Joshi SK, Sharma SN, Singhania DL, Sain RS: Combining ability in the F1 and F2 generations of diallel cross in hexaploid wheat (Triticum aestivum L. em. Thell). Hereditas 2004, 141(2):115-121.
  • [6]Qu Z, Li L, Luo J, Wang P, Yu S, Mou T, Zheng X, Hu Z: QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One 2012, 7(1):e28463.
  • [7]Qi H, Huang J, Zheng Q, Huang Y, Shao R, Zhu L, Zhang Z, Qiu F, Zhou G, Zheng Y, Yue B: Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet 2012, 126(2):369-377.
  • [8]Meyer RC, Witucka-Wall H, Becher M, Blacha A, Boudichevskaia A, Dormann P, Fiehn O, Friedel S, von Korff M, Lisec J, Melzer M, Repsilber D, Schmidt R, Scholz M, Selbig J, Willmitzer L, Altmann T: Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. Plant J 2012, 71(4):669-683.
  • [9]Fujimoto R, Taylor JM, Shirasawa S, Peacock WJ, Dennis ES: Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc Natl Acad Sci USA 2012, 109(18):7109-7114.
  • [10]He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng X: Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 2010, 22(1):17-33.
  • [11]Song G, Guo Z, Liu Z, Cheng Q, Qu X, Chen R, Jiang D, Liu C, Wang W, Sun Y, Zhang L, Zhu Y, Yang D: Global RNA sequencing reveals that genotype-dependent allele-specific expression contributes to differential expression in rice F1 hybrids. BMC Plant Biol 2013, 13:221. BioMed Central Full Text
  • [12]Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, Gan Q, Zeng H, Lu Z, Han Y, Li X, Song G, Zhai H, Peng Y, Li D, Xu H, Wei X, Cao M, Deng H, Xin Y, Fu X, Yuan L, Yu J, Zhu Z, Zhu L: A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci USA 2009, 106(19):7695-7701.
  • [13]Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM: Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 2008, 8:33. BioMed Central Full Text
  • [14]Stupar RM, Springer NM: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 2006, 173(4):2199-2210.
  • [15]Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE: Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 2012, 44(2):217-220.
  • [16]Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA: Heterosis. Plant Cell 2010, 22(7):2105-2112.
  • [17]Birchler JA, Veitia RA: The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 2010, 186(1):54-62.
  • [18]Hochholdinger F, Hoecker N: Towards the molecular basis of heterosis. Trends Plant Sci 2007, 12(9):427-432.
  • [19]Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD: PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 2012, 69(4):601-612.
  • [20]Endo-Higashi N, Izawa T: Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol 2011, 52(6):1083-1094.
  • [21]Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K: Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA 2009, 106(11):4555-4560.
  • [22]Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M: Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol 2008, 148(3):1425-1435.
  • [23]Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K: Hd3a and RFT1 are essential for flowering in rice. Development 2008, 135(4):767-774.
  • [24]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A: Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 2004, 18(8):926-936.
  • [25]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M: Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 2002, 43(10):1096-1105.
  • [26]Farre EM, Liu T: The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 2013, 16(5):621-629.
  • [27]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q: Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 2008, 40(6):761-767.
  • [28]Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T: The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol 2003, 44(11):1229-1236.
  • [29]Ma Q, Hedden P, Zhang Q: Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiol 2011, 156(4):1905-1920.
  • [30]Yamaguchi S: Gibberellin metabolism and its regulation. Annu Rev Plant Biol 2008, 59:225-251.
  • [31]Olszewski N, Sun TP, Gubler F: Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 2002, 14(Suppl):S61-S80.
  • [32]Hedden P, Phillips AL: Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 2000, 5(12):523-530.
  • [33]Wang X, Yao Y, Peng H, Zhang Y, Lu L, Ni Z, Sun Q: The relationship of differential expression of genes in GA biosynthesis and response pathways with heterosis of plant height in a wheat diallel cross. Chin Sci Bull 2009, 54:3029-3034.
  • [34]Zhang Y, Ni Z, Yao Y, Nie X, Sun Q: Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet 2007, 8:40.
  • [35]Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003, 33(Suppl):245-254.
  • [36]Stancheva I, El-Maarri O, Walter J, Niveleau A, Meehan RR: DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev Biol 2002, 243(1):155-165.
  • [37]Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H, Domann FE: Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet 2002, 31(2):175-179.
  • [38]Monk M: Epigenetic programming of differential gene expression in development and evolution. Dev Genet 1995, 17(3):188-197.
  • [39]Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Despres B, Drevensek S, Barneche F, Derozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 2011, 30:1928-1938.
  • [40]Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE: Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 2007, 5(5):e129.
  • [41]Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA: Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005, 122(4):517-527.
  • [42]Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T: Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 2005, 280(18):17732-17736.
  • [43]Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF, Allis CD: Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 2002, 22(5):1298-1306.
  • [44]Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C: Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 2008, 322(5907):1535-1539.
  • [45]Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC: Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 2013, 6(6):1877-1888.
  • [46]Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q: Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 2012, 109(39):15847-15852.
  • [47]Lu H, Romero-Severson J, Bernardo R: Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 2003, 107(3):494-502.
  • [48]Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q: Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 2003, 100(5):2574-2579.
  • [49]Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G: RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun 2013, 4:2832.
  • [50]Holloway B, Luck S, Beatty M, Rafalski JA, Li B: Genome-wide expression quantitative trait loci (eQTL) analysis in maize. BMC Genomics 2011, 12:336. BioMed Central Full Text
  • [51]Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS: Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 2009, 326(5956):1118-1120.
  • [52]Zhang M, Zhao H, Xie S, Chen J, Xu Y, Wang K, Guan H, Hu X, Jiao Y, Song W, Lai J: Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci USA 2011, 108(50):20042-20047.
  • [53]Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM: Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 2011, 23(12):4221-4233.
  • [54]Nodine MD, Bartel DP: Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 2012, 482(7383):94-97.
  • [55]Meyer S, Pospisil H, Scholten S: Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 2007, 63(3):381-391.
  • [56]Bao J, Lee S, Chen C, Zhang X, Zhang Y, Liu S, Clark T, Wang J, Cao M, Yang H, Wang SM, Yu J: Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol 2005, 138(3):1216-1231.
  • [57]Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y: Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res 2013, 23(7):969-971.
  • [58]Griffing B: Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 1956, 9:463-493.
  • [59]Saleh A, Alvarez-Venegas R, Avramova Z: An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc 2008, 3(6):1018-1025.
  • [60]Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129(4):823-837.
  • [61]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7(10):986-995.
  • [62]Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001, 125(1–2):279-284.
  • [63]Wang W, Liu Z, Guo Z, Song G, Cheng Q, Jiang D, Zhu Y, Yang D: Comparative transcriptomes profiling of photoperiod-sensitive male sterile rice Nongken 58S during the male sterility transition between short-day and long-day. BMC Genomics 2011, 12:462. BioMed Central Full Text
  文献评价指标  
  下载次数:4次 浏览次数:3次