期刊论文详细信息
BMC Medical Genetics
Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations
Donald R Love2  Jonathan R Skinner2  Daniel Lai1  Alexander Stuckey4  Ivone US Leong3 
[1] Green Lane Paediatric and Congenital Cardiac Services, Starship Children’s Hospital, Private Bag 92024, Auckland 1142, New Zealand;Department of Child Health, University of Auckland, Auckland, New Zealand;Diagnostic Genetics, LabPlus, Auckland City Hospital, Auckland, New Zealand;Bioinformatics Institute, University of Auckland, Auckland, New Zealand
关键词: In silico prediction tools;    Ion channels;    Genetics;    Long QT syndrome;   
Others  :  1210170
DOI  :  10.1186/s12881-015-0176-z
 received in 2014-11-03, accepted in 2015-04-22,  发布年份 2015
PDF
【 摘 要 】

Background

Long QT syndrome (LQTS) is an autosomal dominant condition predisposing to sudden death from malignant arrhythmia. Genetic testing identifies many missense single nucleotide variants of uncertain pathogenicity. Establishing genetic pathogenicity is an essential prerequisite to family cascade screening. Many laboratories use in silico prediction tools, either alone or in combination, or metaservers, in order to predict pathogenicity; however, their accuracy in the context of LQTS is unknown. We evaluated the accuracy of five in silico programs and two metaservers in the analysis of LQTS 1–3 gene variants.

Methods

The in silico tools SIFT, PolyPhen-2, PROVEAN, SNPs&GO and SNAP, either alone or in all possible combinations, and the metaservers Meta-SNP and PredictSNP, were tested on 312 KCNQ1, KCNH2 and SCN5A gene variants that have previously been characterised by either in vitro or co-segregation studies as either “pathogenic” (283) or “benign” (29). The accuracy, sensitivity, specificity and Matthews Correlation Coefficient (MCC) were calculated to determine the best combination of in silico tools for each LQTS gene, and when all genes are combined.

Results

The best combination of in silico tools for KCNQ1 is PROVEAN, SNPs&GO and SIFT (accuracy 92.7%, sensitivity 93.1%, specificity 100% and MCC 0.70). The best combination of in silico tools for KCNH2 is SIFT and PROVEAN or PROVEAN, SNPs&GO and SIFT. Both combinations have the same scores for accuracy (91.1%), sensitivity (91.5%), specificity (87.5%) and MCC (0.62). In the case of SCN5A, SNAP and PROVEAN provided the best combination (accuracy 81.4%, sensitivity 86.9%, specificity 50.0%, and MCC 0.32). When all three LQT genes are combined, SIFT, PROVEAN and SNAP is the combination with the best performance (accuracy 82.7%, sensitivity 83.0%, specificity 80.0%, and MCC 0.44). Both metaservers performed better than the single in silico tools; however, they did not perform better than the best performing combination of in silico tools.

Conclusions

The combination of in silico tools with the best performance is gene-dependent. The in silico tools reported here may have some value in assessing variants in the KCNQ1 and KCNH2 genes, but caution should be taken when the analysis is applied to SCN5A gene variants.

【 授权许可】

   
2015 Leong et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603020357656.pdf 1111KB PDF download
Figure 4. 12KB Image download
Figure 3. 90KB Image download
Figure 2. 183KB Image download
Figure 1. 176KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Chung SK, MacCormick JM, McCulley CH, Crawford J, Eddy CA, Mitchell EA et al.. Long QT and Brugada syndrome gene mutations in New Zealand. Heart Rhythm. 2007; 4:1306-14.
  • [2]Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G et al.. Prevalence of the congenital long-QT syndrome. Circulation. 2009; 120:1761-7.
  • [3]Leong IU, Skinner J, Love D. Application of massively parallel sequencing in the clinical diagnostic testing of inherited cardiac conditions. Med Sci. 2014; 2:98-126.
  • [4]Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL et al.. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000; 102:1178-85.
  • [5]Giudicessi JR, Kapplinger JD, Tester DJ, Alders M, Salisbury BA, Wilde AA et al.. Phylogenetic and physicochemical analyses enhance the classification of rare nonsynonymous single nucleotide variants in type 1 and 2 long-QT syndrome. Circ Cardiovasc Genet. 2012; 5:519-28.
  • [6]Shimizu W. Clinical and genetic diagnosis for inherited cardiac arrhythmias. J Nippon Med Sch. 2014; 81:203-10.
  • [7]Earle N, Crawford J, Smith W, Hayes I, Shelling A, Hood M et al.. Community detection of long QT syndrome with a clinical registry: an alternative to ECG screening programs? Heart Rhythm. 2013; 10(2):233-8.
  • [8]Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD et al.. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009; 6(9):1297-303.
  • [9]Ackerman MJ, Splawski I, Makielski JC, Tester DJ, Will ML, Timothy KW et al.. Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm. 2004; 1(5):600-7.
  • [10]Ackerman MJ, Tester DJ, Jones GS, Will ML, Burrow CR, Curran ME. Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc. 2003; 78(12):1479-87.
  • [11]Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat. 2008; 29(11):1327-36.
  • [12]Bioinformatic tool and resource analysis. [http://www.ngrl.org.uk/Manchester/projects/bioinformatic-tools]
  • [13]Hou J, Ma J. Identifying driver mutations in cancer. In: Bioinformatic for diagnosis, prognosis and treatment of complex diseases. Shen B, editor. Springer Science+Business Media Dordrecht, Dordrecht; 2013: p.220.
  • [14]Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001; 11(5):863-74.
  • [15]Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res. 2002; 12(3):436-46.
  • [16]Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012; 7(10):e46688.
  • [17]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al.. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248-9.
  • [18]Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat. 2009; 30(8):1237-44.
  • [19]Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007; 35(11):3823-35.
  • [20]Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP et al.. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat. 2007; 28(7):683-93.
  • [21]Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009; 19(9):1553-61.
  • [22]Flanagan SE, Patch AM, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers. 2010; 14(4):533-7.
  • [23]Hicks S, Wheeler DA, Plon SE, Kimmel M. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum Mutat. 2011; 32(6):661-8.
  • [24]Balasubramanian S, Xia Y, Freinkman E, Gerstein M. Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res. 2005; 33(5):1710-21.
  • [25]Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 2006; 34(5):1317-25.
  • [26]Bao L, Cui Y. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bioinformatics (Oxford, England). 2005; 21(10):2185-90.
  • [27]Chao EC, Velasquez JL, Witherspoon MS, Rozek LS, Peel D, Ng P et al.. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat. 2008; 29(6):852-60.
  • [28]Karchin R. Next generation tools for the annotation of human SNPs. Brief Bioinform. 2009; 10(1):35-52.
  • [29]Olatubosun A, Valiaho J, Harkonen J, Thusberg J, Vihinen M. PON-P: integrated predictor for pathogenicity of missense variants. Hum Mutat. 2012; 33(8):1166-74.
  • [30]Capriotti E, Altman RB, Bromberg Y. Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics. 2013; 14 Suppl 3:S2. BioMed Central Full Text
  • [31]Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J et al.. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014; 10(1):e1003440.
  • [32]Napolitano C, Wilson J, deGiuli L. Inherited arrhythmias database. In: Pavia, Italy and New York, USA: IRCCS Fondazione Salvatore Maugeri and Cardiovascular Genetics Program; 2000: 1.
  • [33]Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J et al.. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010; 7(1):33-46.
  • [34]Zhang T, Moss A, Cong P, Pan M, Chang B, Zheng L et al.. LQTS gene LOVD database. Hum Mutat. 2010; 31(11):E1801-10.
  • [35]Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BeMC Genomics. 2013; 14 Suppl 3:S6. BioMed Central Full Text
  • [36]Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics (Oxford, England). 2000; 16(5):412-24.
  • [37]Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975; 405(2):442-51.
  • [38]Vihinen M. How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics. 2012; 13 Suppl 4:S2. BioMed Central Full Text
  • [39]Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006; 27:861-74.
  • [40]Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC et al.. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011; 12:77. BioMed Central Full Text
  • [41]Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952; 47:583-621.
  • [42]Tester DJ, Ackerman MJ. Novel gene and mutation discovery in congenital long QT syndrome: let's keep looking where the street lamp standeth. Heart Rhythm. 2008; 5(9):1282-4.
  • [43]Bezzina CR, Rook MB, Wilde AA. Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovasc Res. 2001; 49(2):257-71.
  • [44]Remme CA, Wilde AA. SCN5A overlap syndromes: no end to disease complexity? Europace. 2008; 10(11):1253-5.
  • [45]Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P et al.. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem. 2001; 276(33):30623-30.
  • [46]Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation. 2000; 102(9):945-7.
  • [47]Gnad F, Baucom A, Mukhyala K, Manning G, Zhang Z. Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC genomics. 2013; 14 Suppl 3:S7.
  • [48]Makielski JC, Ye B, Valdivia CR, Pagel MD, Pu J, Tester DJ et al.. A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels. Circ Res. 2003; 93(9):821-8.
  • [49]Tan BH, Valdivia CR, Rok BA, Ye B, Ruwaldt KM, Tester DJ et al.. Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants. Heart Rhythm. 2005; 2(7):741-7.
  • [50]Borchert B, Lawrenz T, Stellbrink C. Long and short QT syndrome. Herzschrittmacherther Elektrophysiol. 2006; 17(4):205-10.
  文献评价指标  
  下载次数:45次 浏览次数:21次