期刊论文详细信息
BMC Structural Biology
Crystal structure of the DNA polymerase III β subunit (β-clamp) from the extremophile Deinococcus radiodurans
Elin Moe2  Kenneth A Johnson1  Kjersti Lian1  Laila Niiranen1 
[1] The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UIT – the Arctic University of Norway, Tromsø, N-9037, Norway;The Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
关键词: Radiation resistance;    Deinococcus radiodurans;    DNA polymerase III β subunit;   
Others  :  1137284
DOI  :  10.1186/s12900-015-0032-6
 received in 2014-11-18, accepted in 2015-02-13,  发布年份 2015
PDF
【 摘 要 】

Background

Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution.

Results

The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution.

Conclusions

The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.

【 授权许可】

   
2015 Niiranen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150316020032167.pdf 3603KB PDF download
Figure 5. 26KB Image download
Figure 4. 102KB Image download
Figure 3. 163KB Image download
Figure 2. 105KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Warbrick E: The puzzle of PCNA’s many partners. Bioessays 2000, 22(11):997-1006.
  • [2]Maki H, Kornberg A: The polymerase subunit of DNA polymerase III of Escherichia coli. II. Purification of the alpha subunit, devoid of nuclease activities. J Biol Chem 1985, 260(24):12987-92.
  • [3]O’Donnell ME, Kornberg A: Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J Biol Chem 1985, 260(23):12875-83.
  • [4]Indiani C, O’Donnell M: The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 2006, 7(10):751-61.
  • [5]Kong XP, Onrust R, O’Donnell M, Kuriyan J: Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 1992, 69(3):425-37.
  • [6]Argiriadi MA, Goedken ER, Bruck I, O’Donnell M, Kuriyan J: Crystal structure of a DNA polymerase sliding clamp from a Gram-positive bacterium. BMC Struct Biol 2006, 6:2. BioMed Central Full Text
  • [7]Gui WJ, Lin SQ, Chen YY, Zhang XE, Bi LJ, Jiang T: Crystal structure of DNA polymerase III beta sliding clamp from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2011, 405(2):272-7.
  • [8]Wolff P, Amal I, Olieric V, Chaloin O, Gygli G, Ennifar E, Lorber B, Guichard G, Wagner J, Dejaegere A, et al.: Differential modes of peptide binding onto replicative sliding clamps from various bacterial origins. J Med Chem 2014, 57(18):7565-76.
  • [9]Stewart J, Hingorani MM, Kelman Z, O’Donnell M: Mechanism of beta clamp opening by the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 2001, 276(22):19182-9.
  • [10]Krishna TS, Fenyo D, Kong XP, Gary S, Chait BT, Burgers P, Kuriyan J: Crystallization of proliferating cell nuclear antigen (PCNA) from Saccharomyces cerevisiae. J Mol Biol 1994, 241(2):265-8.
  • [11]Williams GJ, Johnson K, Rudolf J, McMahon SA, Carter L, Oke M, Liu H, Taylor GL, White MF, Naismith JH: Structure of the heterotrimeric PCNA from Sulfolobus solfataricus. Acta Crystallogr Sect F: Struct Biol Cryst Commun 2006, 62(Pt 10):944-8.
  • [12]Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O’Donnell M: Structure of a sliding clamp on DNA. Cell 2008, 132(1):43-54.
  • [13]McNally R, Bowman GD, Goedken ER, O’Donnell M, Kuriyan J: Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct Biol 2010, 10:3. BioMed Central Full Text
  • [14]Neuwald AF: Evolutionary clues to DNA polymerase III beta clamp structural mechanisms. Nucleic Acids Res 2003, 31(15):4503-16.
  • [15]Wijffels G, Johnson WM, Oakley AJ, Turner K, Epa VC, Briscoe SJ, Polley M, Liepa AJ, Hofmann A, Buchardt J, et al.: Binding inhibitors of the bacterial sliding clamp by design. J Med Chem 2011, 54(13):4831-8.
  • [16]Wolff P, Olieric V, Briand JP, Chaloin O, Dejaegere A, Dumas P, Ennifar E, Guichard G, Wagner J, Burnouf DY: Structure-based design of short peptide ligands binding onto the E. coli processivity ring. J Med Chem 2011, 54(13):4627-37.
  • [17]Yin Z, Kelso MJ, Beck JL, Oakley AJ: Structural and thermodynamic dissection of linear motif recognition by the E. coli sliding clamp. J Med Chem 2013, 56(21):8665-73.
  • [18]Mattimore V, Battista JR: Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 1996, 178(3):633-7.
  • [19]Krisko A, Radman M. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol. 2013;5(7).
  • [20]Baytaluk MV, Gelfand MS, Mironov AA: Exact mapping of prokaryotic gene starts. Brief Bioinform 2002, 3(2):181-94.
  • [21]Baudet M, Ortet P, Gaillard JC, Fernandez B, Guerin P, Enjalbal C, Subra G, de Groot A, Barakat M, Dedieu A, et al.: Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons. Mol Cell Proteomics 2010, 9(2):415-26.
  • [22]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007, 372(3):774-97.
  • [23]Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P: Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. J Mol Biol 2004, 335(5):1187-97.
  • [24]Robert X, Gouet P: Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014, 42(Web Server issue):W320-4.
  • [25]White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, et al.: Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999, 286(5444):1571-7.
  • [26]de Sanctis D, Beteva A, Caserotto H, Dobias F, Gabadinho J, Giraud T, Gobbo A, Guijarro M, Lentini M, Lavault B, et al.: ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. J Synchrotron Radiat 2012, 19(Pt 3):455-61.
  • [27]Kabsch W: Xds. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 2):125-32.
  • [28]Evans P: Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 2006, 62(Pt 1):72-82.
  • [29]Vagin A, Teplyakov A: MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997, 30:1022-5.
  • [30]Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al.: Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011, 67(Pt 4):235-42.
  • [31]Langer G, Cohen SX, Lamzin VS, Perrakis A: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 2008, 3(7):1171-9.
  • [32]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997, 53(Pt 3):240-55.
  • [33]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2126-32.
  • [34]Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010, 66(Pt 1):12-21.
  • [35]Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 2001, 98(18):10037-41.
  文献评价指标  
  下载次数:60次 浏览次数:38次