期刊论文详细信息
BMC Neuroscience
Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse
Teng Chen1  Yonghui Dang1  Tao Li1  Sisi Chen2  Liren Huang2  Yanlin Li1  Yanjiong Chen3  Yufeng Liu2  Jie Zhu1  Li Zhu1 
[1] The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Shaanxi, PR China;Beijing Genomics Institute, Shenzhen 518083, PR China;Departments of Immunology and Pathogenic Biology, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi, PR China
关键词: Trans;    Cis;    LncRNA;    Nucleus accumbens;    Sensitization;    Methamphetamine;   
Others  :  1170539
DOI  :  10.1186/s12868-015-0157-3
 received in 2014-08-15, accepted in 2015-03-13,  发布年份 2015
PDF
【 摘 要 】

Background

Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown.

Results

Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms. Gene ontology (GO) and KEGG pathway enrichment analyses revealed that the predicted cis- and trans- associated genes were significantly enriched during neuronal development, neuronal plasticity, learning and memory, and reward and addiction.

Conclusions

Taken together, our results suggest that METH can elicit global changes in lncRNA expressions in the NAc of sensitized mice that might be involved in METH-induced locomotor sensitization and addiction.

【 授权许可】

   
2015 Zhu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150417021253908.pdf 1953KB PDF download
Figure 5. 145KB Image download
Figure 4. 42KB Image download
Figure 3. 18KB Image download
Figure 2. 97KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]TE Robinson KB: Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004, 47(Suppl 1):33-46.
  • [2]Zhu J, Chen Y, Zhao N, Cao G, Dang Y, Han W, et al.: Distinct roles of dopamine D3 receptors in modulating methamphetamine-induced behavioral sensitization and ultrastructural plasticity in the shell of the nucleus accumbens. J Neurosci Res 2012, 90(4):895-904.
  • [3]Chen L, Xu M: Dopamine D1 and D3 receptors are differentially involved in cue-elicited cocaine seeking. J Neurochem 2010, 114(2):530-41.
  • [4]Kong H, Kuang W, Li S, Xu M: Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine. Neurosci 2011, 176:152-61.
  • [5]Ren Z, Sun WL, Jiao H, Zhang D, Kong H, Wang X, et al.: Dopamine D1 and N-methyl-D-aspartate receptors and extracellular signal-regulated kinase mediate neuronal morphological changes induced by repeated cocaine administration. Neurosci 2010, 168(1):48-60.
  • [6]Zhao N, Chen Y, Zhu J, Wang L, Cao G, Dang Y, et al.: Levo-tetrahydropalmatine attenuates the development and expression of methamphetamine-induced locomotor sensitization and the accompanying activation of ERK in the nucleus accumbens and caudate putamen in mice. Neurosci 2014, 258:101-10.
  • [7]Hollander JA, Im H, Amelio AL, Kocerha JK, Bali P, Lu Q, et al.: Striatal microRNA controls cocaine intake through CREB signaling. Nature 2010, 466:197-202.
  • [8]Eipper-Mains J, Kiraly DD, Palakodeti D, Mains RE, Eipper BA, Graveley BR. microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA. 2011;17(8):1529-1543.
  • [9]Bu Q, Hu Z, Chen F, Zhu R, Deng Y, Shao X, et al.: Transcriptome analysis of long non-coding RNAs of the nucleus accumbens in cocaine-conditioned mice. J Neurochem 2012, 123:790-9.
  • [10]Chekulaeva M, Filipowicz W: Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin in Cell Biol 2009, 21(3):452-60.
  • [11]Kornienko AE, Guenzl PM, Barlow DP, Pauler FM: Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013, 11:59. BioMed Central Full Text
  • [12]Im H, Hollander JA, Bali P, Kenny PJ: MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010, 13(9):1120-7.
  • [13]Chandraskear V, Dreyer J: Regulation of miR-124, let-7d, and miR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 2011, 36:1149-64.
  • [14]Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al.: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316:1484-8.
  • [15]Bernard D, Prasanth VK, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al.: A long nuclear-retained non-coding RNA regulate synaptogenesis by modulating gene expression. EMBO J 2010, 29:3082-93.
  • [16]Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS, et al.: Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci 2010, 11:14. BioMed Central Full Text
  • [17]Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al.: Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008, 14:723-30.
  • [18]Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK: The DISC locus in psychiatric illness. Mol Psychiatr 2008, 13:36-64.
  • [19]Michelhaugh SK, Lipovich L, Blythe J, Jia H, Gregory K, Bannon MJ: Mining Affymetrix microarray data for long noncoding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 2011, 116(3):459-66.
  • [20]UCSC. mm9. http://genome.ucsc.edu/.
  • [21]NONCODE V3.0. http://www.noncode.org/.
  • [22]Huang Y, Liu N, Wang JP, Wang YQ, Yu XL, Wang ZB, et al.: Regulatory long non-coding RNA and its functions. J Physiol Biochem 2012, 68:611-8.
  • [23]Knauss JL, Sun T: Regulatory mechanisms of long noncoding RNAs in vertebrate central nervous system development and function. Neurosci 2013, 235:200-14.
  • [24]Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS: Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008, 105:716-21.
  • [25]Wagner EJ, Carpenter PB: Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 2012, 13:115-26.
  • [26]Conte C, Dastugue B, Vaury C: Promoter competition as a mechanism of transcriptional interference mediated by retrotransposons. EMBO J 2002, 21:3908-16.
  • [27]Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, et al.: Antisense transcription in the mammalian transcriptome. Science 2005, 309:1564-6.
  • [28]Werner A: Biological functions of natural antisense transcripts. BMC Biol 2013, 11:31. BioMed Central Full Text
  • [29]Lewis A, Green K, Dawson C, Redrup L, Huynh KD, Lee JT, et al.: Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development 2006, 133:4203-10.
  • [30]Komine Y, Nakamura K, Katsuki M, Yamamori T: Novel transcription factor zfh-5 is negatively regulated by its own antisense RNA in mouse brain. Mol Cell Neurosci 2006, 31:273-83.
  • [31]Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al.: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458:223-7.
  • [32]Ponting CP, Oliver PL, Reik W: Evolution and functions of long noncoding RNAs. Cell 2009, 136:629-41.
  • [33]Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al.: Widespread transcription at neuronal activity-regulated enhancers. Nature 2010, 465:182-7.
  • [34]Ørom UA, Shiekhattar R: Long non-coding RNAs and enhancers. Curr Opin Genet Dev 2011, 21:194-8.
  • [35]Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM: An abundance of bidirectional promoters in the human genome. Genome Res 2004, 4:62-6.
  • [36]Wei W, Pelechano V, Järvelin AI, Steinmetz LM: Functional consequences of bidirectional promoters. Trends Genet 2011, 27:267-76.
  • [37]Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, et al.: LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012, 47:648-55.
  • [38]Gong CG, Maquat LE. LncRNAs transactivate Staufen1-mediated mRNA decay by duplexing with 3'UTRs via Alu elements. Nature. 2011; 470:284–288.
  • [39]Tafer H, Hofacker IL: RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 2008, 24:2657-63.
  • [40]Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al.: The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012, 22:1775-89.
  • [41]Engström PG, Suzuki H, Ninomiya N, Akalin A, Sessa L, Lavorgna G, et al.: Complex loci in human and mouse genomes. PLoS Genet 2006, 2:e47.
  • [42]Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD: The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Gene Dev 2006, 20:1470-84.
  • [43]Martianov I, Ramadass A, Barros AS, Chow N, Akoulitchev A: Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 2007, 445:666-70.
  • [44]Petrovic MM, Nowacki J, Olivo V, Tsaneva-Atanasova K, Randall AD, Mellor JR: Inhibition of post-synaptic Kv7/KCNQ/M channels facilitates long-term potentiation in the hippocampus. PLoS One 2012, 7:e30402.
  • [45]Komine Y, Takao K, Miyakawa T, Yamamori T: Behavioral abnormalities observed in Zfhx2-deficient mice. PLoS One 2012, 7:e53114.
  • [46]Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A: A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 2007, 8:39. BioMed Central Full Text
  • [47]Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, et al.: Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 2011, 14:452-8.
  • [48]Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M, Nakagawa S: Competition between a noncoding exon and introns: gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells 2011, 16:479-90.
  • [49]Li Y, Kauer JA: Repeated exposure to amphetamine disrupts dopaminergic modulation of excitatory synaptic plasticity and neurotransmission in nucleus accumbens. Synapse 2004, 51:1-10.
  • [50]Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM: It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 2003, 26:184-92.
  • [51]Dietz DM, Dietz KC, Nestler EJ, Russo SJ: Molecular mechanisms of psychostimulant-induced structural plasticity. Pharmacopsychiatry 2009, 42:S69-78.
  • [52]Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313:1093-1097.
  • [53]Mitsushima D, Sano A, Takahashi T: A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun 2013, 4:2760.
  • [54]Steven E, Hyman MD: Addiction: a disease of learning and memory. Am J Psychiatry 2005, 162:1414-22.
  • [55]Mattick JS: Introns: evolution and function. Curr Opin Genet Dev 1994, 4:823-31.
  • [56]Mattick JS, Gagen MJ: The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 2001, 18:1611-30.
  • [57]Martone R, Euskirchen G, Bertone P, Hartman S, Royce TE, Luscombe NM, et al.: Distribution of NF-kappa B-binding sites across human chromosome 22. Proc Natl Acad Sci U S A 2003, 100:12247-52.
  • [58]Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, et al.: Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004, 116:499-509.
  • [59]Euskirchen G, Royce TE, Bertone P, Martone R, Rinn JL, Nelson FK, et al.: CREB binds to multiple loci on human chromosome 22. Mol Cell Biol 2004, 24:3804-14.
  • [60]SILVA. http://www.arb-silva.de/.
  • [61]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al.: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-7.
  • [62]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14(4):R36. BioMed Central Full Text
  • [63]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-5.
  • [64]KEGG. http://www.kegg.jp/.
  • [65]Non-redundant protein database. ftp://ftp.ncbi.nih.gov/blast/db/FASTA/.*.
  • [66]COG. http://www.ncbi.nlm.nih.gov/COG/.
  • [67]UniProtKB/Swiss-Prot. http://www.uniprot.org/help/uniprotkb.
  • [68]Coding Potential Calculator. http://cpc.cbi.pku.edu.cn/.
  • [69]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7(10):986-95.
  • [70]Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001, 29(4):1165-88.
  • [71]Blast2GO. http://www.blast2go.com/b2ghome.
  • [72]Gene ontology. http://www.geneontology.org/.
  • [73]KEGG pathway. http://www.genome.jp/kegg/pathway.html.
  文献评价指标  
  下载次数:23次 浏览次数:17次