期刊论文详细信息
BMC Genomics
Allele-specific expression and eQTL analysis in mouse adipose tissue
Thomas A Drake3  Aldons J Lusis1  Eleazar Eskin2  Atila van Nas1  Lisa Martin1  Farhad Hormozdiari2  Yehudit Hasin-Brumshtein1 
[1] Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;Department of Computer Science, University of California, Los Angeles, CA 90095, USA;Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
关键词: C57BL/6J;    DBA/2J;    DNase I hypersensitivity;    RNA-seq;    Adipose;    Allele Specific Expression;    eQTL;    Trans;    Cis;   
Others  :  1216590
DOI  :  10.1186/1471-2164-15-471
 received in 2013-11-15, accepted in 2014-05-07,  发布年份 2014
PDF
【 摘 要 】

Background

The simplest definition of cis-eQTLs versus trans, refers to genetic variants that affect expression in an allele specific manner, with implications on underlying mechanism. Yet, due to technical limitations of expression microarrays, the vast majority of eQTL studies performed in the last decade used a genomic distance based definition as a surrogate for cis, therefore exploring local rather than cis-eQTLs.

Results

In this study we use RNAseq to explore allele specific expression (ASE) in adipose tissue of male and female F1 mice, produced from reciprocal crosses of C57BL/6J and DBA/2J strains. Comparison of the identified cis-eQTLs, to local-eQTLs, that were obtained from adipose tissue expression in two previous population based studies in our laboratory, yields poor overlap between the two mapping approaches, while both local-eQTL studies show highly concordant results. Specifically, local-eQTL studies show ~60% overlap between themselves, while only 15-20% of local-eQTLs are identified as cis by ASE, and less than 50% of ASE genes are recovered in local-eQTL studies. Utilizing recently published ENCODE data, we also find that ASE genes show significant bias for SNPs prevalence in DNase I hypersensitive sites that is ASE direction specific.

Conclusions

We suggest a new approach to analysis of allele specific expression that is more sensitive and accurate than the commonly used fisher or chi-square statistics. Our analysis indicates that technical differences between the cis and local-eQTL approaches, such as differences in genomic background or sex specificity, account for relatively small fraction of the discrepancy. Therefore, we suggest that the differences between two eQTL mapping approaches may facilitate sorting of SNP-eQTL interactions into true cis and trans, and that a considerable portion of local-eQTL may actually represent trans interactions.

【 授权许可】

   
2014 Hasin-Brumshtein et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701125348559.pdf 1704KB PDF download
Figure 4. 81KB Image download
Figure 3. 165KB Image download
Figure 2. 117KB Image download
Figure 1. 188KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Majewski J, Pastinen T: The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet 2011, 27:72-79.
  • [2]Stranger BE, Montgomery SB, Dimas AS, Parts L, Stegle O, Ingle CE, Sekowska M, Smith GD, Evans D, Gutierrez-Arcelus M, Price A, Raj T, Nisbett J, Nica AC, Beazley C, Durbin R, Deloukas P, Dermitzakis ET: Patterns of cis regulatory variation in diverse human populations. PLoS Genet 2012, 8:e1002639.
  • [3]Grundberg E, Adoue V, Kwan T, Ge B, Duan QL, Lam KCL, Koka V, Kindmark A, Weiss ST, Tantisira K, Mallmin H, Raby BA, Nilsson O, Pastinen T: Global analysis of the impact of environmental perturbation on cis-regulation of gene expression. PLoS Genet 2011, 7:e1001279.
  • [4]van Nas A, Ingram-Drake L, Sinsheimer JS, Wang SS, Schadt EE, Drake T, Lusis AJ: Expression quantitative trait loci: replication, tissue- and sex-specificity in mice. Genetics 2010, 185:1059-1068.
  • [5]Bottomly D, Ferris MT, Aicher LD, Rosenzweig E, Whitmore A, Aylor DL, Haagmans BL, Gralinski LE, Bradel-Tretheway BG, Bryan JT, Threadgill DW, de Villena FP-M, Baric RS, Katze MG, Heise M, McWeeney SK: Expression quantitative trait Loci for extreme host response to influenza a in pre-collaborative cross mice. G3 (Bethesda) 2012, 2:213-221.
  • [6]Benzer S: Fine structure of a genetic region in bacteriophage. Proc Natl Acad Sci USA 1955, 41:344-354.
  • [7]Davis RC, van Nas A, Castellani LW, Zhao Y, Zhou Z, Wen P, Yu S, Qi H, Rosales M, Schadt EE, Broman KW, Péterfy M, Lusis AJ: Systems genetics of susceptibility to obesity-induced diabetes in mice. Physiol Genomics 2012, 44:1-13.
  • [8]Fu J, Wolfs MGM, Deelen P, Westra H-J, Fehrmann RSN, te Meerman GJ, Buurman WA, Rensen SSM, Groen HJM, Weersma RK, van den Berg LH, Veldink J, Ophoff RA, Snieder H, van Heel D, Jansen RC, Hofker MH, Wijmenga C, Franke L: Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet 2012, 8:e1002431.
  • [9]Doss S, Schadt EE, Drake TA, Lusis AJ: Cis-acting expression quantitative trait loci in mice. Genome Res 2005, 15:681-691.
  • [10]Ronald J, Brem RB, Whittle J, Kruglyak L: Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet 2005, 1:e25.
  • [11]Rockman MV, Kruglyak L: Genetics of global gene expression. Nat Rev Genet 2006, 7:862-872.
  • [12]Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F: Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 2013, 24:22-30.
  • [13]Xu X, Zhang Y, Williams J, Antoniou E, McCombie WR, Wu S, Zhu W, Davidson NO, Denoya P, Li E: Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. BMC Bioinforma 2013, 14(Suppl 9):S1.
  • [14]DeVeale B, van der Kooy D, Babak T: Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet 2012, 8:e1002600.
  • [15]Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C: High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 2010, 329:643-648.
  • [16]Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG: Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 2008, 3:e3839.
  • [17]Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A, Keildson S, Bell JT, Yang T-P, Meduri E, Barrett A, Nisbett J, Sekowska M, Wilk A, Shin S-Y, Glass D, Travers M, Min JL, Ring S, Ho K, Thorleifsson G, Kong A, Thorsteindottir U, Ainali C, Dimas AS, Hassanali N, Ingle C, Knowles D, Krestyaninova M, Lowe CE, di Meglio P, et al.: Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 2012, 44:1084-1089.
  • [18]Ju YS, Kim J-I, Kim S, Hong D, Park H, Shin J-Y, Lee S, Lee W-C, Kim S, Yu S-B, Park S-S, Seo S-H, Yun J-Y, Kim H-J, Lee D-S, Yavartanoo M, Kang HP, Gokcumen O, Govindaraju DR, Jung JH, Chong H, Yang K-S, Kim H, Lee C, Seo J-S: Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nat Genet 2011, 43:745-752.
  • [19]Almlöf JC, Lundmark P, Lundmark A, Ge B, Maouche S, Göring HHH, Liljedahl U, Enström C, Brocheton J, Proust C, Godefroy T, Sambrook JG, Jolley J, Crisp-Hihn A, Foad N, Lloyd-Jones H, Stephens J, Gwilliam R, Rice CM, Hengstenberg C, Samani NJ, Erdmann J, Schunkert H, Pastinen T, Deloukas P, Goodall AH, Ouwehand WH, Cambien F, Syvänen A-C: Powerful identification of cis-regulatory SNPs in human primary monocytes using allele-specific gene expression. PLoS One 2012, 7:e52260.
  • [20]Gregg C, Zhang J, Butler JE, Haig D, Dulac C: Sex-specific parent-of-origin allelic expression in the mouse brain. Science 2010, 329:682-685.
  • [21]Bell O, Tiwari VK, Thomä NH, Schübeler D: Determinants and dynamics of genome accessibility. Nat Rev Genet 2011, 12:554-564.
  • [22]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
  • [23]Philippe O, Rio M, Carioux A, Plaza J-M, Guigue P, Molinari F, Boddaert N, Bole-Feysot C, Nitschke P, Smahi A, Munnich A, Colleaux L: Combination of linkage mapping and microarray-expression analysis identifies NF-kappaB signaling defect as a cause of autosomal-recessive mental retardation. Am J Hum Genet 2009, 85:903-908.
  • [24]Mir A, Kaufman L, Noor A, Motazacker MM, Jamil T, Azam M, Kahrizi K, Rafiq MA, Weksberg R, Nasr T, Naeem F, Tzschach A, Kuss AW, Ishak GE, Doherty D, Ropers HH, Barkovich AJ, Najmabadi H, Ayub M, Vincent JB: Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-beta-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am J Hum Genet 2009, 85:909-915.
  • [25]Mochida GH, Mahajnah M, Hill AD, Basel-Vanagaite L, Gleason D, Hill RS, Bodell A, Crosier M, Straussberg R, Walsh CA: A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Hum Genet 2009, 85:897-902.
  • [26]Morcos L, Ge B, Koka V, Lam KCL, Pokholok DK, Gunderson KL, Montpetit A, Verlaan DJ, Pastinen T: Genome-wide assessment of imprinted expression in human cells. Genome Biol 2011, 12:R25.
  • [27]Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ: Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006, 16:995-1004.
  • [28]Mozhui K, Lu L, Armstrong WE, Williams RW: Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012, 6:63.
  • [29]Schweingruber C, Rufener SC, Zünd D, Yamashita A, Mühlemann O: Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta 2013, 1829:612-623.
  • [30]Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PAC, Monlong J, Rivas MA, Gonzàlez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HPJ, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, et al.: Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501:506-511.
  • [31]Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, Neubauer M, Neuhaus I, Yordanova R, Guan B, Truong A, Yang W, He A, Kayne P, Gargalovic P, Kirchgessner T, Pan C, Castellani LW, Kostem E, Furlotte N, Drake TA: A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 2010, 20(2):281-290.
  • [32]Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, Pan C, Civelek M, Rau CD, Bennett BJ, Mehrabian M, Ursell LK, He A, Castellani LW, Zinker B, Kirby M, Drake TA, Drevon CA, Knight R, Gargalovic P, Kirchgessner T, Eskin E, Lusis AJ: Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 2013, 17:141-152.
  • [33]Lagarrigue S, Martin LJ, Hormozdiari F, Roux P-F, Pan C, van Nas A, Demeure O, Cantor R, Ghazalpour A, Eskin E, Lusis AJ: Analysis of allele specific expression in mouse liver by RNA-Seq: a comparison with “cis”-eQTL identified using genetic linkage. Genetics 2013, 195(3):1157-66.
  • [34]Cockerill PN: Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J 2011, 278:2182-2210.
  • [35]Degner JF, Pai AA, Pique-Regi R, Veyrieras J-B, Gaffney DJ, Pickrell JK, De Leon S, Michelini K, Lewellen N, Crawford GE, Stephens M, Gilad Y, Pritchard JK: DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 2012, 482:390-394.
  • [36]Hudson QJ, Kulinski TM, Huetter SP, Barlow DP: Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity (Edinb) 2010, 105:45-56.
  • [37]Wolf JB, Cheverud JM, Roseman C, Hager R: Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet 2008, 4:e1000091.
  • [38]Li Y, Sasaki H: Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res 2011, 21:466-473.
  • [39]Hach F, Hormozdiari F, Alkan C, Birol I, Eichler EE, Sahinalp SC: mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat Methods 2010, 7:576-577.
  • [40]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7:562-578.
  文献评价指标  
  下载次数:128次 浏览次数:103次