期刊论文详细信息
BMC Medical Genomics
OncoRep: an n-of-1 reporting tool to support genome-guided treatment for breast cancer patients using RNA-sequencing
Andrew I Su1  Louis Gioia1  Kathleen M Fisch1  Tobias Meißner1 
[1] Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla 92037, CA, USA
关键词: n-of-1 reporting;    RNA-Seq;    Individualized medicine;    Breast cancer;   
Others  :  1210997
DOI  :  10.1186/s12920-015-0095-z
 received in 2014-12-31, accepted in 2015-04-30,  发布年份 2015
PDF
【 摘 要 】

Background

Breast cancer comprises multiple tumor entities associated with different biological features and clinical behaviors, making individualized medicine a powerful tool to bring the right drug to the right patient. Next generation sequencing of RNA (RNA-Seq) is a suitable method to detect targets for individualized treatment. Challenges that arise are i) preprocessing and analyzing RNA-Seq data in the n-of-1 setting, ii) extracting clinically relevant and actionable targets from complex data, iii) integrating drug databases, and iv) reporting results to clinicians in a timely and understandable manner.

Results

To address these challenges, we present OncoRep, an RNA-Seq based n-of-1 reporting tool for breast cancer patients. It reports molecular classification, altered genes and pathways, gene fusions, clinically actionable mutations and drug recommendations. It visualizes the data in an approachable html-based interactive report and a PDF clinical report, providing the clinician and tumor board with a tool to guide the treatment decision making process.

Conclusions

OncoRep is free and open-source (https://bitbucket.org/sulab/oncorep/ webcite), thereby offering a platform for future development and innovation by the community.

【 授权许可】

   
2015 Meißner et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150609020905979.pdf 1148KB PDF download
Fig. 2. 34KB Image download
Fig. 1. 63KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin; 61(2):69–90. doi:10.3322/caac.20107.
  • [2]Vargo-Gogola T, Rosen JM: Modelling breast cancer: one size does not fit all. Nat Rev Cancer 2007, 7(9):659-72.
  • [3]Weigelt B, Reis-Filho JS: Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 2009, 6(12):718-30.
  • [4]Natrajan R, Wilkerson P: From integrative genomics to therapeutic targets,. Cancer Res 2013, 73(12):3483-8.
  • [5]Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, et al. SEER Cancer Statistics Review, 1975-2010. 2013. http://seer.cancer.gov/csr/.
  • [6]Brewster AM, Hortobagyi GN, Broglio KR, Kau SW, Santa-Maria CA, Arun B, et al.: Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst 2008, 100(16):1179-83.
  • [7]Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN: The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009, 14(4):320-68.
  • [8]Martin LA, André F, Campone M, Bachelot T, Jerusalem G: mTOR inhibitors in advanced breast cancer: ready for prime time? Cancer Treat Rev 2013, 39(7):742-52.
  • [9]Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al.: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009, 361(2):123-34.
  • [10]De Mattos-Arruda L, Rodon J: Pilot studies for personalized cancer medicine: focusing on the patient for treatment selection. Oncologist 2013, 18(11):1180-1188.
  • [11]Eswaran J, Cyanam D, Mudvari P, Reddy SDN, Pakala SB, Nair SS, et al.: Transcriptomic landscape of breast cancers through mRNA sequencing. Sci Rep 2012, 2:264.
  • [12]Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al.: Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 2013, 8(9):1765-86.
  • [13]Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, et al.: A novel signaling pathway impact analysis. Bioinformatics (Oxford, England) 2009, 25(1):75-82.
  • [14]Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, et al.: Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 2011, 12(1):6.
  • [15]Piskol R, Ramaswami G, Li JB: Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 2013, 93(4):641-51.
  • [16]Fisch KM, Meissner T, Gioia L, Ducom JC, Carland T, Loguercio S, Su AI. Omics Pipe: A Computational Framework for Reproducible Multi-Omics Data Analysis. Technical report August 2014. doi:10.1101/008383. http://biorxiv.org/content/early/2014/08/23/008383.abstract.
  • [17]Eswaran J, Cyanam D, Mudvari P, Reddy SDN, Pakala SB, Nair SS, et al.: Transcriptomic landscape of breast cancers through mRNA sequencing. Sci Rep 2012, 2:264.
  • [18]Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, et al.: RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 2013, 3:1689.
  • [19]Horvath A, Pakala SB, Mudvari P, Reddy SDN, Ohshiro K, Casimiro S, et al.: Novel insights into breast cancer genetic variance through RNA sequencing. Sci Rep 2013, 3:2256.
  • [20]Team RDC: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2009.
  • [21]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):80.
  • [22]Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 2013, 29(1):15-21.
  • [23]Anders S, Pyl PT, Huber W. HTSeq A Python framework to work with high-throughput sequencing data. Technical report February 2014. doi:10.1101/002824. http://biorxiv.org/content/early/2014/08/19/002824.abstract.
  • [24]Anders S, Huber W: Differential expression analysis for sequence count data,. Genome Biol 2010, 11(10):106.
  • [25]Kostka D, Spang R: Microarray based diagnosis profits from better documentation of gene expression signatures. PLoS Comput Biol 2008, 4(2):22.
  • [26]Warren P, Taylor D, Martini PGV, Jackson J, Bienkowska J. {PANP} - a New Method of Gene Detection on Oligonucleotide Expression Arrays. In: Proc. 7th IEEE International Conference on Bioinformatics and Bioengineering BIBE 2007: 2007. p. 108–15. doi:10.1109/BIBE.2007.4375552.
  • [27]Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002, 99(10):6567-572.
  • [28]Sales G, Calura E, Cavalieri D, Romualdi C: graphite - a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 2012, 13(1):20.
  • [29]Shugay M, Ortiz de Mendíbil IN, Vizmanos JL, Novo FJ: Oncofuse: a computational framework for the prediction of the oncogenic potential of gene fusions. Bioinformatics (Oxford, England) 2013, 29(20):2539-46.
  • [30]Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly; 6(2):80–92. doi:10.4161/fly.19695.
  • [31]Liu X, Jian X, Boerwinkle E: dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat 2013, 34(9):2393-402.
  • [32]Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al.: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011, 39(Database issue):945-50.
  • [33]Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al.: ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014, 42(Database issue):980-5.
  • [34]Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J: A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014, 46(3):310-5.
  • [35]Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006, 34(Database issue):668-72.
  • [36]Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al.: Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012, 92(4):414-7.
  • [37]Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP, Jene-Sanz A, et al.: IntOGen-mutations identifies cancer drivers across tumor types. Nat Methods 2013, 10(11):1081-2.
  • [38]Good BM, Ainscough BJ, McMichael JF, Su AI, Griffith OL: Organizing knowledge to enable personalization of medicine in cancer. Genome Biol 2014, 15(8):438.
  • [39]Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al.: Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012, 486(7403):405-9.
  • [40]Edwards PAW, Howarth KD: Are breast cancers driven by fusion genes? Breast Cancer Res: BCR 2012, 14(2):303.
  文献评价指标  
  下载次数:33次 浏览次数:19次