期刊论文详细信息
BMC Cell Biology
Association of telomere instability with senescence of porcine cells
Lin Liu2  Na Liu1  Maja Okuka2  Kai Liu1  Guangzhen Ji1 
[1] State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences, Nankai University, Tianjin, 300071, China;Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL, 33612, USA
关键词: Senescence;    Telomere dysfunction;    Telomere doublets;    qPCR;    Q-FISH;    Telomere;   
Others  :  856636
DOI  :  10.1186/1471-2121-13-36
 received in 2012-02-21, accepted in 2012-12-10,  发布年份 2012
PDF
【 摘 要 】

Background

Telomeres are essential for the maintenance of genomic stability, and telomere dysfunction leads to cellular senescence, carcinogenesis, aging, and age-related diseases in humans. Pigs have become increasingly important large animal models for preclinical tests and study of human diseases, and also may provide xeno-transplantation sources. Thus far, Southern blot analysis has been used to estimate average telomere lengths in pigs. Telomere quantitative fluorescence in situ hybridization (Q-FISH), however, can reveal status of individual telomeres in fewer cells, in addition to quantifying relative telomere lengths, and has been commonly used for study of telomere function of mouse and human cells. We attempted to investigate telomere characteristics of porcine cells using telomere Q-FISH method.

Results

The average telomere lengths in porcine cells measured by Q-FISH correlated with those of quantitative real-time PCR method (qPCR) or telomere restriction fragments (TRFs) by Southern blot analysis. Unexpectedly, we found that porcine cells exhibited high incidence of telomere doublets revealed by Q-FISH method, coincided with increased frequency of cellular senescence. Also, telomeres shortened during subculture of various porcine primary cell types. Interestingly, the high frequency of porcine telomere doublets and telomere loss was associated with telomere dysfunction-induced foci (TIFs). The incidence of TIFs, telomere doublets and telomere loss increased with telomere shortening and cellular senescence during subculture.

Conclusion

Q-FISH method using telomere PNA probe is particularly useful for characterization of porcine telomeres. Porcine cells exhibit high frequency of telomere instability and are susceptible to telomere damage and replicative senescence.

【 授权许可】

   
2012 Ji et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723034909178.pdf 2766KB PDF download
113KB Image download
45KB Image download
115KB Image download
109KB Image download
149KB Image download
59KB Image download
【 图 表 】

【 参考文献 】
  • [1]Blackburn EH: Switching and signaling at the telomere. Cell 2001, 106:661-673.
  • [2]Palm W, de Lange T: How shelterin protects mammalian telomeres. Annu Rev Genet 2008, 42:301-334.
  • [3]Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR: A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988, 85:6622-6626.
  • [4]Meyne J, Ratliff RL, Moyzis RK: Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 1989, 86:7049-7053.
  • [5]Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB: Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992, 89:10114-10118.
  • [6]Harley CB, Futcher AB, Greider CW: Telomeres shorten during ageing of human fibroblasts. Nature 1990, 345:458-460.
  • [7]Wright WE, Shay JW: Historical claims and current interpretations of replicative aging. Nature Biotechnol 2002, 20:682-688.
  • [8]Smogorzewska A, de Lange T: Different telomere damage signaling pathways in human and mouse cells. EMBO J 2002, 21:4338-4348.
  • [9]Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J: Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biol 2003, 5:741-747.
  • [10]Wright WE, Shay JW: Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 2000, 6:849-851.
  • [11]Davis T, Kipling D: Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and ageing. Biogerontology 2005, 6:371-385.
  • [12]Davis T, Skinner JW, Faragher RG, Jones CJ, Kipling D: Replicative senescence in sheep fibroblasts is a p53 dependent process. Exp Gerontol 2005, 40:17-26.
  • [13]Brummendorf TH, Mak J, Sabo KM, Baerlocher GM, Dietz K, Abkowitz JL, Lansdorp PM: Longitudinal studies of telomere length in feline blood cells: implications for hematopoietic stem cell turnover in vivo. Exp Hematol 2002, 30:1147-1152.
  • [14]Cozzi E, Bosio E, Seveso M, Rubello D, Ancona E: Xenotransplantation as a model of integrated, multidisciplinary research. Organogenesis 2009, 5:288-296.
  • [15]Giraud S, Favreau F, Chatauret N, Thuillier R, Maiga S, Hauet T: Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol 2011, 2011:532127.
  • [16]Whyte JJ, Prather RS: Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 2011, 78:879-891.
  • [17]Adam SJ, Counter CM: A method to generate genetically defined tumors in pigs. Methods Enzymol 2008, 439:39-51.
  • [18]Samstein B, Platt JL: Physiologic and immunologic hurdles to xenotransplantation. J Am Soc Nephrol 2001, 12:182-193.
  • [19]Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM: Genetic induction of tumorigenesis in swine. Oncogene 2007, 26:1038-1045.
  • [20]Kipling D, Cooke HJ: Hypervariable ultra-long telomeres in mice. Nature 1990, 347(6291):400-402.
  • [21]Fradiani PA, Ascenzioni F, Lavitrano M, Donini P: Telomeres and telomerase activity in pig tissues. Biochimie 2004, 86:7-12.
  • [22]Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK, Lansdorp PM: Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 1997, 94:7423-7428.
  • [23]Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco MA: Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 1999, 18:2950-2960.
  • [24]Callicott RJ, Womack JE: Real-time PCR assay for measurement of mouse telomeres. Comp Med 2006, 56:17-22.
  • [25]Cawthon RM: Telomere measurement by quantitative PCR. Nucleic Acids Res 2002, 30:e47.
  • [26]Baird DM, Rowson J, Wynford-Thomas D, Kipling D: Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 2003, 33:203-207.
  • [27]de la Sena C, Chowdhary BP, Gustavsson I: Localization of the telomeric (TTAGGG)n sequences in chromosomes of some domestic animals by fluorescence in situ hybridization. Hereditas 1995, 123:269-274.
  • [28]Wnuk M, Bugno M, Slota E: Application of primed in situ DNA synthesis (PRINS) with telomere human commercial kit in molecular cytogenetics of equus caballus and Sus scrofa scrofa. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 2008, 46:85-88.
  • [29]Jiang L, Carter DB, Xu J, Yang X, Prather RS, Tian XC: Telomere lengths in cloned transgenic pigs. Biol Reprod 2004, 70:1589-1593.
  • [30]Jeon HY, Hyun SH, Lee GS, Kim HS, Kim S, Jeong YW, Kang SK, Lee BC, Han JY, Ahn C, et al.: The analysis of telomere length and telomerase activity in cloned pigs and cows. Mol Reprod Dev 2005, 71:315-320.
  • [31]Hemann MT, Strong MA, Hao LY, Greider CW: The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001, 107:67-77.
  • [32]Abdallah P, Luciano P, Runge KW, Lisby M, Geli V, Gilson E, Teixeira MT: A two-step model for senescence triggered by a single critically short telomere. Nature Cell Biol 2009, 11:988-993.
  • [33]der-Sarkissian H, Bacchetti S, Cazes L, Londono-Vallejo JA: The shortest telomeres drive karyotype evolution in transformed cells. Oncogene 2004, 23:1221-1228.
  • [34]Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 2009, 138:90-103.
  • [35]McNees CJ, Tejera AM, Martinez P, Murga M, Mulero F, Fernandez-Capetillo O, Blasco MA: ATR suppresses telomere fragility and recombination but is dispensable for elongation of short telomeres by telomerase. J Cell Biol 2010, 188:639-652.
  • [36]Meier A, Fiegler H, Munoz P, Ellis P, Rigler D, Langford C, Blasco MA, Carter N, Jackson SP: Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO J 2007, 26:2707-2718.
  • [37]Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW, et al.: Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res 2011, 21:779-792.
  • [38]Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 2004, 14:501-513.
  • [39]Flores I, Blasco MA: A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One 2009, 4:e4934.
  • [40]Takai H, Smogorzewska A, de Lange T: DNA damage foci at dysfunctional telomeres. Curr Biol 2003, 13:1549-1556.
  • [41]Poon SS, Martens UM, Ward RK, Lansdorp PM: Telomere length measurements using digital fluorescence microscopy. Cytometry 1999, 36:267-278.
  • [42]Russo V, Berardinelli P, Martelli A, Di Giacinto O, Nardinocchi D, Fantasia D, Barboni B: Expression of telomerase reverse transcriptase subunit (TERT) and telomere sizing in pig ovarian follicles. J Histochem Cytochem 2006, 54:443-455.
  • [43]Martens UM, Chavez EA, Poon SS, Schmoor C, Lansdorp PM: Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res 2000, 256:291-299.
  • [44]Noel JF, Wellinger RJ: Abrupt telomere losses and reduced end-resection can explain accelerated senescence of Smc5/6 mutants lacking telomerase. DNA Repair 2011, 10:271-282.
  • [45]Bringold F, Serrano M: Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 2000, 35:317-329.
  • [46]Ramirez RD, Herbert BS, Vaughan MB, Zou Y, Gandia K, Morales CP, Wright WE, Shay JW: Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 2003, 22:433-444.
  • [47]Kaul Z, Cesare AJ, Huschtscha LI, Neumann AA, Reddel RR: Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep 2011, 13:52-59.
  • [48]Philippe C, Coullin P, Bernheim A: Double telomeric signals on single chromatids revealed by FISH and PRINS. Ann Genet 1999, 42:202-209.
  • [49]Mitchell TR, Glenfield K, Jeyanthan K, Zhu XD: Arginine methylation regulates telomere length and stability. Mol Cell Biol 2009, 29:4918-4934.
  • [50]d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003, 426:194-198.
  • [51]Wang RC, Smogorzewska A, de Lange T: Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 2004, 119:355-368.
  • [52]van Overbeek M, de Lange T: Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol 2006, 16:1295-1302.
  • [53]Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, McNees C, Flores JM, Fernandez-Capetillo O, Tarsounas M, Blasco MA: Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 2009, 23:2060-2075.
  • [54]Liu L, Bailey SM, Okuka M, Munoz P, Li C, Zhou L, Wu C, Czerwiec E, Sandler L, Seyfang A, et al.: Telomere lengthening early in development. Nature Cell Biol 2007, 9:1436-1441.
  文献评价指标  
  下载次数:121次 浏览次数:34次